Что будет если число поделить на 0. Деление на ноль: почему нельзя

Строгий запрет на деление на ноль налагается ещё в младших классах школы. Дети обычно и не задумываются о его причинах, но на самом деле знать, почему что-нибудь запрещается, и интересно, и полезно.

Арифметические действия

Арифметические действия, которые изучаются в школе, неравноценны с точки зрения математиков. Они признают полноправными только две из этих операций - сложение и умножение. Они входят в само понятие числа, и все остальные действия с числами так или иначе строятся на этих двух. То есть невозможно не только деление на ноль, но и деление вообще.

Вычитание и деление

Чего же не хватает остальным действиям? Опять же, из школы известно, что, например, вычесть из семи четыре - значит, взять семь конфет, четыре из них съесть и посчитать те, что останутся. Но математики поеданием конфет и вообще воспринимают их совершенно иначе. Для них есть только сложение, то есть запись 7 - 4 означает число, которое в сумме с числом 4 будет равно 7. То есть для математиков 7 - 4 - это краткая запись уравнения: х + 4 = 7. Это не вычитание, а задача - найти такое число, которое нужно поставить вместо х.

То же самое относится к делению и умножению. Деля десять на два, младшеклассник раскладывает десять конфет на две одинаковые кучки. Математик же и здесь видит уравнение: 2 · х = 10.

Так и выясняется, почему запрещено деление на ноль: оно просто невозможно. Запись 6: 0 должна превращаться в уравнение 0 · х = 6. То есть требуется найти число, которое можно умножить на ноль и получить 6. Но известно, что умножение на ноль всегда даёт ноль. Это сущностное свойство ноля.

Таким образом, нет такого числа, которое, умножаясь на ноль, давало бы какое-то число, отличное от ноля. Значит, у этого уравнения нет решения, нет такого числа, которое соотносилось бы с записью 6: 0, то есть она не имеет смысла. О её бессмысленности и говорят, когда запрещают деление на ноль.

Делится ли ноль на ноль?

А можно ли ноль разделить на ноль? Уравнение 0 · х = 0 не вызывает затруднений, и можно взять за х этот самый ноль и получить 0 · 0 = 0. Тогда 0: 0 = 0? Но, если, например, принять за х единицу, тоже получится 0 · 1 = 0. Можно принять за х вообще какое угодно число и делить на ноль, и результат останется прежним: 0: 0 = 9, 0: 0 = 51 и так далее.

Таким образом, в это уравнение можно вставить совершенно любое число, и невозможно выбрать какое-то конкретное, невозможно определить, какое число обозначается записью 0: 0. То есть и эта запись тоже не имеет смысла, и деление на ноль всё равно невозможно: он не делится даже сам на себя.

Такова важная особенность операции деления, то есть умножения и связанного с ним числа ноль.

Остаётся вопрос: но вычитать его можно? Можно сказать, что настоящая математика начинается с этого интересного вопроса. Чтобы найти ответ на него, необходимо узнать формальные математические определения числовых множеств и познакомиться с операциями над ними. Например, существуют не только простые, но и делениекоторых отличается от деления обычных. Это не входит в школьную программу, но университетские лекции по математике начинаются именно с этого.

Математическое правило относительно деления на ноль всем людям рассказывали еще в первом классе общеобразовательной школы. «Делить на ноль нельзя», - учили всех нас и запрещали под страхом подзатыльника делить на ноль и вообще обсуждать эту тему. Хотя некоторые учителя младших классов все-таки пробовали объяснить на простейших примерах, почему нельзя делить на ноль, но эти примеры были настолько нелогичны, что проще было просто запомнить это правило и не задавать лишних вопросов. Но все эти примеры были нелогичными по той причине, что логически объяснить это в первом классе нам учителя не могли, так как в первом классе мы и близко не знали, что такое уравнение, а логически это математическое правило объяснить можно только с помощью уравнений.

Все знают, что при делении любого числа на ноль выйдет пустота. Почему именно пустота, мы рассмотрим потом.

Вообще в математике только две процедуры с числами признаются независимыми. Это сложение и умножение. Остальные же процедуры считаются производные от этих двух процедур. Рассмотрим это на примере.

Скажите, сколько будет, например, 11-10? Мы все моментально ответим, что это будет 1. А как мы нашли такой ответ? Кто-то скажет, что это и так понятно, что будет 1, кто-то скажет, что от 11 яблок отнял 10 и посчитал, что получилось одно яблоко. С точки зрения логики все правильно, но вот по законам математики эта задача решается по-другому. Нужно вспомнить, что основными процедурами считаются сложение и умножение, поэтому нужно составить такое уравнение: х+10=11, а только потом х=11-10, х=1. Заметим, что сложение идет на первом месте, а только потом на основе уравнения мы можем отнимать. Казалось бы, зачем столько процедур? Ведь ответ и так очевиден. Но только такими процедурами можно объяснить невозможность деления на ноль.

Например, мы делаем такую математическую задачу: хотим 20 поделить на ноль. Итак, 20:0=х. Чтобы узнать, сколько же будет, нужно вспомнить, что процедура деления вытекает из умножения. Другими словами, деление-это производная процедура от умножения. Поэтому нужно составить уравнение из умножением. Итак, 0*х=20. Вот тут и тупик. Какое бы число мы не множили на ноль, все равно будет 0, но не 20. Вот отсюда и вытекает правило: делить на ноль нельзя. Ноль делить на любое число можно, а вот число на ноль - увы, нельзя.

Отсюда появляется еще один вопрос: а можно ли ноль делить на ноль? Итак, 0:0=х, значит 0*х=0. Это уравнение можно решить. Возьмем, например, х=4, значит 0*4=0. Получается, что если разделить ноль на ноль, получится 4. Но и здесь все не так просто. Если мы возьмем, например, х=12 или х=13, то выйдет тот же ответ (0*12=0). Вообще, какое бы мы число не подставляли, все равно выйдет 0. Поэтому, если 0:0, то получится бесконечность. Вот такая нехитрая математика. К сожалению, процедура деления ноль на ноль тоже бессмысленна.

Вообще, цифра ноль в математике самая интересная. К примеру, все знают, что любое число в нулевой степени дает единицу. Конечно, с таким примером в реальной жизни мы не встречаемся, но вот с делением на ноль жизненные ситуации попадаются очень часто. Поэтому запомним, что делить на ноль нельзя.

Учебник: «Математика» М.И.Моро

Цели урока: создать условия для формирования умения делить 0 на число.

Задачи урока:

  • раскрыть смысл деления 0 на число через связь умножения и деления;
  • развивать самостоятельность, внимание, мышление;
  • формировать навыки решения примеров на табличное умножение и деление.

Для достижения цели урок был разработан с учётом деятельностного подхода.

Структура урока включала в себя:

  1. Орг. момент , целью которого было позитивно настроить детей на учебную деятельность.
  2. Мотивация позволила актуализировать знания, сформировать цели и задачи урока. Для этого были предложены задания на нахождение лишнего числа, классификацию примеров на группы, добавление недостающих чисел . В ходе решения этих заданий, дети столкнулись с проблемой : нашёлся пример, для решения которого не хватает имеющихся знаний. В связи с этим дети самостоятельно сформулировали цель и поставили перед собой учебные задачи урока.
  3. Поиск и открытие нового знания дал возможность детям предложить различные варианты решения задания. Основываясь на ранее изученный материал, они смогли найти верное решение и прийти к выводу , в котором сформулировали новое правило.
  4. Во время первичного закрепления ученики комментировали свои действия,работая по правилу , дополнительно были подобраны свои примеры на это правило.
  5. Для автоматизации действий и умения пользоваться правилам в нестандартных заданиях дети решали уравнения, выражения в несколько действий.
  6. Самостоятельная работа и проведенная взаимопроверка показали, что большинство детей тему усвоили.
  7. Во время рефлексии дети сделали вывод, что поставленная цель урока достигнута и оценили себя с помощью карточек.

В основе урока лежали самостоятельные действия учащихся на каждом этапе, полное погружение в учебную задачу. Этому способствовали такие приёмы, как работа в группах, само- и взаимопроверка, создание ситуации успеха, дифференцированные задания, саморефлексия.

Ход урока

Цель этапа Содержание этапа Деятельность ученика
1. Орг. момент
Подготовка уч-ся к работе, позитивный настрой на учебную деятельность. Стимулирование на учебную деятельность .
Проверьте свою готовность к уроку, сядьте ровно, облокотитесь на спинку стула.
Потрите свои ушки, чтобы кровь активнее поступала в мозг. Сегодня у вас будет много интересной работы, с которой, я уверена, вы справитесь на отлично.
Организация рабочего места, проверка посадки.
2. Мотивация.
Стимулирование познавательной
активности,
активизация мыслительного процесса
Актуализация знаний, достаточных для приобретения нового знания.
Устный счёт.
Проверка знания табличного умножения:
Решение заданий, основанных на знании табличного умножения.
А) найди лишнее число:
2 4 6 7 10 12 14
6 18 24 29 36 42
Объясните, почему оно лишнее и каким числом его надо заменить.
Нахождение лишнего числа.
Б) вставьте пропущенные числа:
… 16 24 32 … 48 …
Добавление недостающего числа.
Создание проблемной ситуации
Задания в парах:
В) расставьте примеры в 2 группы:

Почему так распределили? (с ответом 4 и 5).
Классификация примеров по группам.
Карточки:
8·7-6+30:6=
28:(16:4)·6=
30-(20-10:2):5=
30-(20-10·2):5=
Сильные ученики работают по индивидуальным карточкам.
Что вы заметили? Есть ли здесь лишний пример?
Все ли примеры вы смогли решить?
У кого возникли затруднения?
Чем этот пример отличается от остальных?
Если кто-то решил, то молодец. Но почему не все смогли справиться с этим примером?
Нахождение затруднения.
Выявление недостающего знания, причины затруднения.
Постановка учебной задачи.
Здесь есть пример с 0. А от 0 можно ожидать разные фокусы. Это необычное число.
Вспомните, что вы знаете про 0? (а·0=0, 0·а=0, 0+а=а)·
Приведите примеры.
Посмотрите, какой он коварный: когда его прибавляют, он не изменяет число, а когда умножают, превращают его в 0.
Подходят ли эти правила к нашему примеру?
Как же он поведёт себя при елении?
Наблюдение над известными приёмами действий с 0 и соотношение с исходным примером.
Итак, какова наша цель? Решить этот пример верно.
Таблица на доске.
Что для этого надо? Узнать правило деления 0 на число.
Выдвижение гипотезы,
Как же найти верное решение?
С каким действием связано умножение? (с делением)
Приведите пример
2 · 3 = 6
6: 2 = 3

Можем ли мы теперь 0:5?
Это значит, надо найти число, при умножении которого на 5 получится 0.
х·5=0
Это число 0. Значит, 0:5=0.

Приведите свои примеры.

поиск решения на основе ранее изученного,
Формулирование правила.
Какое же правило теперь можно сформулировать?
При делении 0 на число получается 0.
0: а = 0.
Решение типовых заданий с комментированием.
Работа по схеме (0:а=0)
5. Физминутка.
Профилактика нарушения осанки, снятие усталости с глаз, общего утомления.
6. Автоматизация знаний.
Выявление границ применимости нового знания. В каких ещё заданиях может понадобиться знание этого правила? (в решении примеров, уравнений)
Использование полученных знаний в разных заданиях.
Работа в группах.
Что неизвестно в этих уравнениях?
Вспомните, как узнать неизвестный множитель.
Решите уравнения.
Какое решение в 1 уравнении? (0)
Во 2? (нет решения, на 0 делить нельзя)
Обращение к ранее изученным умениям.
** Составьте уравнение с решением х=0 (х·5=0) Для сильных уч-ся творческое задание
7. Самостоятельная работа.
Развитие самостоятельности, познавательных способностей Самостоятельная работа с последующей взаимопроверкой.
№6
Активные умственные действия учащихся, связанные с поисками решения, опираясь на свои знания. Самоконтроль и взаимоконтроль.
Сильные ученики проверяют и помогают более слабым.
8. Работа над ранее пройденным материалом. Отработка умения решения задач.
Формирование навыка решения задач. Как вы думаете, часто ли в задачах используется число 0?
(Нет, не часто, т.к. 0 – это ничего, а в задачах должно какое-то количество чего-либо.)
Тогда будем решать задачи, где есть другие числа.
Прочитайте задачу. Что поможет решить задачу? (таблица)
Какие столбики в таблице надо записать? Заполните таблицу. Составьте план решения: что надо узнать в 1, во 2 действии?
Работа над задачей с использованием таблицы.
Планирование решения задачи.
Самостоятельная запись решения.
Самоконтроль по образцу.
9. Рефлексия. Итоги урока.
Организация самооценки деятельности. Повышение мотивации ребёнка.
Над какой темой сегодня работали? О чём вы не знали в начале урока?
Какую цель ставили перед собой?
Достигли вы её? С каким правилом познакомились?
Оцените свою работу, выставив соответствующий значок:
солнышко – я доволен собой, у меня всё получилось
белое облако – всё хорошо, но я мог работать лучше;
серое облако – урок обычный, ничего интересного;
капелька – ничего не получилось
Осознавание своей деятельности, самоанализ своей работы. Фиксация соответствия результатов деятельности и поставленной цели.
10. Домашнее задание.

Говорят, можно поделить на ноль если определить результат деления на ноль. Просто нужно расширить алгебру. По странному стечению обстоятельств найти хоть какой-то, а лучше понятный и простой, пример такого расширения не удается. Чтобы исправить интернет нужна либо демонстрация одного из способов такого расширения, либо описание почему это не возможно.


Статья написана в продолжение тренда:

Disclaimer

Цель данной статьи - объяснить «человеческим языком», как работают фундаментальные основы математики, структурировать знания и восстановить упущенные причинно-следственные связи между разделами математики. Все рассуждения являются философскими, в части суждений расходятся с общепринятыми (следовательно, не претендует на математическую строгость). Статья рассчитана на уровень читателя «сдал вышку много лет назад».

Понимание принципов арифметики, элементарной, общей и линейной алгебры, математического и нестандартного анализа, теории множеств, общей топологии, проективной и аффинной геометрии - желательно, но не обязательно.

В ходе экспериментов ни одна бесконечность не пострадала.

Пролог

Выход «за рамки» - это естественный процесс поиска новых знаний. Но не всякий поиск приносит новое знание и следовательно пользу.

1. Вобще-то уже все поделили до нас!

1.1 Аффинное расширение числовой прямой

Начнем с того, с чего начинают, наверное, все искатели приключений при делении на ноль. Вспомним график функции .


Слева и справа от нуля функция уходит в разные стороны «небытия». В самом нуле вообще “омут” и ничего не видно.

Вместо того, чтобы бросаться в «омут» с головой, посмотрим что туда втекает и что оттуда вытекает. Для этого воспользуемся пределом - основным инструментом математического анализа . Основная “фишка” в том, что предел позволяет идти к заданной точке так близко, как это возможно, но не “наступить на нее”. Такая себе “оградка” перед “омутом”.


Оригинал

Хорошо, «оградку» поставили. Уже не так страшно. У нас есть два пути к «омуту». Зайдем слева - крутой спуск, справа - крутой подъем. Сколько к “оградке” не иди, ближе она не становится. Пересечь нижнее и верхнее «небытие» никак не выходит. Возникают подозрения, может мы идем по кругу? Хотя нет, числа-то меняются, значит не по кругу. Пороемся в сундучке с инструментами математического анализа еще. Кроме пределов с «оградкой» в комплекте идет положительная и отрицательная бесконечности . Величины совершенно абстрактные (не являются числами), хорошо формализованы и готовы к употреблению! Это нам подходит. Дополним наше «бытие» (множество вещественных чисел) двумя бесконечностями со знаком.


Математическим языком:
Именно это расширение позволяет брать предел при аргументе стремящемся к бесконечности и получить бесконечность в качестве результата взятия предела.

Есть два раздела математики которые описывают одно и тоже используя разную терминологию.

Подытожим:

В сухом остатке. Старые подходы перестали работать. Сложность системы, в виде кучи “если”, “для всех, кроме” и т.п., возросла. У нас было только две неопределенности 1/0 и 0/0 (мы не рассматривали степенные операции), стало пять. Раскрытие одной неопределенности породило еще больше неопределенностей.

1.2 Колесо

На введении беззнаковой бесконечности все не остановилось. Для того чтобы выбраться из неопределенностей нужно второе дыхание.

Итак, у нас есть множество вещественных чисел и две неопределенности 1/0 и 0/0. Для устранения первой мы выполнили проективное расширение числовой прямой (то есть ввели беззнаковую бесконечность). Попробуем разобраться со второй неопределенностью вида 0/0. Сделаем аналогично. Дополним множество чисел новым элементом, представляющим вторую неопределенность.


Определение операции деления основано на умножении. Это нам не подходит. Отвяжем операции друг от друга, но сохраним привычное поведение для вещественных чисел. Определим унарную операцию деления, обозначаемую знаком "/".


Доопределим операции.


Данная структура называется «Колесом» (Wheel). Термин был взят из-за схожести с топологической картинкой проективного расширения числовой прямой и точки 0/0.


Вроде все неплохо выглядит, но дьявол кроется в деталях:

Чтобы устаканить все особенности, дополнительно к расширению множества элементов прилагается бонус в виде не одного, а двух тождеств, описывающих дистрибутивный закон.


Математическим языком:
С точки зрения общей алгебры мы оперировали полем . А в поле, как известно, определены всего две операции (сложение и умножение). Понятие деления выводится через обратные, а если еще глубже, то единичные элементы. Внесенные изменения превращают нашу алгебраическую систему в моноид как по операции сложения (с нулем в качестве нейтрального элемента), так и по операции умножения (с единицей в качестве нейтрального элемента).

В трудах первооткрывателей не всегда используются символы ∞ и ⊥. Вместо этого можно встретить запись в виде /0 и 0/0.


Мир уже не так прекрасен, не правда ли? Все же не стоит спешить. Проверим, справятся ли новые тождества дистрибутивного закона с нашим расширенным множеством .


На этот раз результат намного лучше.

Подытожим:

В сухом остатке. Алгебра работает отлично. Однако за основу было взято понятие «не определено» которое стали считать чем-то существующим и оперировать им. Однажды кто-нибудь скажет, что все плохо и нужно разбить данное «не определено» еще на несколько “не определено", но помельче. Общая алгебра скажет: “Без проблем, Бро!".
Примерно так постулированы дополнительные (j и k) мнимые единицы в кватернионах Добавить метки

У математиков специфический юмор и некоторые вопросы, связанные с вычислениями, уже давно не воспринимаются серьезно. Не всегда понятно, пытаются тебе на полном серьезе объяснить, почему нельзя делить на ноль или это очередная шутка. А ведь сам вопрос не такой уж очевидный, если в элементарной математике до его решения можно дойти чисто логически, то вот в высшей вполне могут быть другие исходные условия.

Когда появился ноль?

Цифра ноль таит в себе множество загадок:

  • В Древнем Риме этого числа не знали, система отсчета начиналась с I.
  • За право называться прародителями ноля долгое время спорили арабы и индийцы.
  • Исследования культуры Майя показали, что эта древняя цивилизация вполне могла быть первой, в плане употребления ноля.
  • Ноль не обладает никаким числовым значением, даже минимальным.
  • Он буквально означает ничто, отсутствие предметов для счета.

В первобытном строе не было особой нужды для такой цифры, отсутствие чего-либо можно было объяснить при помощи слов. Но с зарождением цивилизаций повысились и потребности человека, в плане архитектуры и инженерии.

Для осуществления более сложных расчетов и выведения новых функций понадобилось число, которое обозначало бы полное отсутствие чего-либо .

Можно ли делить на ноль?

На этот счет существуют два диаметрально противоположных мнения :

В школе, еще в младших классах учат тому, что на ноль делить нельзя ни в коем случае. Объясняется это предельно просто:

  1. Представим, что у вас есть 20 долек мандарина.
  2. Поделив их на 5, вы раздадите пятерым друзьям по 4 дольки.
  3. Разделить на ноль не получится, ведь самого процесса деления между кем-то не будет.

Конечно же, это образное объяснение, во многом упрощенное и не совсем соответствующее действительности. Но оно предельно доступно поясняет бессмысленность деления чего-либо на ноль.

Ведь, по сути, таким образом можно обозначать факт отсутствия деления. А зачем усложнять математические вычисления и записывать еще и отсутствие деления?

Можно ли ноль делить на число?

С точки зрения прикладной математики, любое деление, в котором принимает участие ноль, имеет не так уж много смысла. Но школьные учебники однозначны в своем мнении:

  • Ноль можно делить.
  • Для деления следует использовать любое число.
  • Нельзя делить ноль на ноль.

Третий пункт может вызвать легкое недоумение, ведь всего несколькими абзацами выше указывалось, что такое деление вполне возможно. На самом деле, все зависит от дисциплины, в рамках которой вы проводите вычисления.

Школьникам в таком случае действительно лучше писать, что выражение невозможно определить , а, следовательно, оно и не имеет смысла. Но в некоторых ответвлениях алгебраической науки допускается запись такого выражения, с делением ноля на ноль. Особенно когда речь идет о вычислительных машинах и языках программирования.

Потребность делить ноль на число может возникнуть во время решения каких-либо равенств и поиска исходных значений. Но в таком случае, в ответе всегда будет ноль . Здесь, как и с умножением, на какое число вы бы не делили ноль, больше ноля в итоге не получите. Поэтому если в огромной формуле заметили это заветное число, постарайтесь быстро «прикинуть», а не сведутся ли все вычисления к очень простому решению.

Если бесконечность делить на ноль

О бесконечно больших и бесконечно малых значениях необходимо было упомянуть чуть раньше, ведь это тоже открывает некоторые лазейки для деления, в том числе и с использованием ноля. Вот правда и тут есть небольшая загвоздка, ведь бесконечно малое значение и полное отсутствие значения - понятия разные .

Но этой небольшой разницей в наших условиях можно пренебречь, в конечном счете, вычисления проходят с использованием абстрактных величин:

  • В числители должен быть знак бесконечности.
  • В знаменатели символическое изображение стремящегося к нулю значения.
  • В ответе выйдет бесконечность, отображающая бесконечно большую функцию.

Следует обратить внимание на то, что речь все же идет о символическом отображении бесконечно малой функции, а не об использовании ноля. С этим знаком ничего не поменялось, на него все так же нельзя делить, только в качестве очень и очень редких исключений.

В большинстве своем ноль используется для решения задач, которые находятся в чисто теоретической плоскости . Возможно, по прошествии десятилетий или даже столетий, всем современным вычислениям найдется практическое применение, и они обеспечат какой-то грандиозный прорыв в науке.

А пока что большинство гениев от математики о всемирном признании лишь мечтают. Исключение из этих правил - наш соотечественник, Перельман . Но его знают благодаря решению действительно эпохальной задачи с доказательством гипотезы Пуанкере и экстравагантному поведению.

Парадоксы и бессмысленность деления на ноль

Деление на ноль, в большинстве своем, не имеет никакого смысла:

  • Деление представляют как функцию, обратную умножению .
  • Мы можем умножить на ноль любое число и получить в ответе ноль.
  • По той же логике, можно было бы делить любое число на ноль.
  • В таких условиях несложно было бы прийти к выводу, что любое число, умноженное или деленное на ноль, равно любому другому числу, над которым провели эту операцию.
  • Откидываем математическое действие и получаем интереснейшее заключение - любое число равно любому числу.

Помимо создания таких вот казусов, деление на ноль не имеет практического значения , от слова вообще. Даже при возможности выполнения этого действия, не выйдет получить никакой новой информации.

С точки зрения элементарной математики, во время деления на ноль происходит разделение целого предмета ноль раз, то есть ни одного раза. Проще говоря - процесса деления не происходит , следовательно, и результата этого события быть не может.

Находясь в одном обществе с математиком, всегда можно задать пару банальных вопросов, по примеру, почему нельзя делить на ноль и получить интересный и доступный для понимания ответ. Или раздраженность, ведь у человека наверняка это спрашивают не в первый раз. И даже не в десятый. Так что берегите своих друзей-математиков, не заставляйте их повторять по сотне раз одно объяснение.

Видео: делим на ноль

В этом видео математик Анна Ломакова расскажет, что произойдет, если поделить какое-либо число на ноль и почему этого делать нельзя, с точки зрения математики:




Top