Построение треугольника по отрезку и двум углам. Видеоурок «Построение треугольника по трем элементам

Решение приведено в учебнике.

Даны три отрезка M 1 N 1 , M 2 N 2 , M 3 N 3 (рис. 148, а). Требуется построить такой треугольник ABC, у которого две стороны, скажем АВ и АС, равны соответственно данным отрезкам M 1 N 1 и M 2 N 2 , а высота АН равна отрезку M 3 N 3 . Проведем решение задачи по описанной схеме.


Допустим, что искомый треугольник ABC построен (рис. 148, б). Мы видим, что сторона АВ и высота АН являются гипотенузой и катетом прямоугольного треугольника АВН. Поэтому построение треугольника ABC можно провести по такому плану: сначала построить прямоугольный треугольник АВН, а затем достроить его до всего треугольника ABC. Построение

Строим прямоугольный треугольник АВН, у которого гипотенуза АВ равна отрезку M 1 N 1 , а катет АН равен данному отрезку M 3 N 3 . Как это сделать, мы знаем (задача 314, в). На рисунке 149, а изображен построенный треугольник АВН. Затем проводим окружность радиуса M 2 N 2 с центром в точке А. Одну из точек пересечения этой окружности с прямой ВН обозначим буквой С. Проведя отрезки ВС и АС, получим искомый треугольник ABC (рис. 149, б).


Доказательство

Треугольник ABC действительно искомый, так как по построению сторона АВ равна M 1 N 1 , сторона АС равна M 2 N 2 , а высота АН равна M 3 N 3 , т. е. треугольник ABC удовлетворяет всем условиям задачи. Исследование

Нетрудно сообразить, что задача имеет решение не при любых данных отрезках M 1 N 1 , M 2 N 2 , М 3 N 3 . В самом деле, если хотя бы один из отрезков M 1 N 1 и M 2 N 2 меньше M 3 N 3 , то задача не имеет решения, так

как наклонные АВ и АС не могут быть меньше перпендикуляра АН. Задача не имеет решения и в том случае, когда M 1 N 1 =M 2 N 2 =M 3 N 3 (объясните почему). В остальных случаях задача имеет решение. Если М 1 N 1 >М 3 N 3 , а M 2 N 2 =M 3 N 3 , то задача имеет единственное решение: в этом случае сторона АС совпадает с высотой АН и искомый треугольник является прямоугольным (рис. 149, в). Если М 1 N 1 >М 3 N 3 , а M 2 N 2 =M 1 N 1 то задача также имеет единственное решение: в этом случае треугольник ABC равнобедренный (рис. 149, г). И наконец, если M 2 N 2 >M 3 N 3 и М 1 N 1 ≠М 2 N 2 , то задача имеет два решения - треугольники ABC и АВС 1 на рисунке 149, д.

§ 1 Построение треугольника по двум сторонам и углу между ними

Построение геометрической фигуры - одна из интересных задач в геометрии. Получить необходимую фигуру только при помощи циркуля и линейки без делений не просто.

Фигура треугольник часто используется в решении задач, но как его правильно построить?

Пусть необходимо построить треугольник по двум сторонам и углу между ними.

Во-первых, что такое две стороны - это два произвольных отрезка, например, P1Q1 и P2Q2, а также произвольный угол альфа. Все эти элементы уже построены, другими словами, эти элементы - дано задачи.

Во-вторых, необходимо определить последовательность построения: сначала необходимо построить одну сторону треугольника, затем угол и потом вторую сторону треугольника.

Итак, перед нами белый лист, проведем прямую а и отметим на ней точку А, затем возьмем циркуль и отложим отрезок АВ, равный отрезку P1Q1. Далее выберем произвольный раствор циркуля и проведем одну окружность с центром в вершине угла альфа и другую с центром в точке А. Первая окружность пересечет лучи угла альфа в точках Р и К, а вторая окружность пересечет прямую а в точке М. Проведем отрезок РК. Затем возьмем раствор циркуля, равный отрезку РК, и построим окружность с центром в точке М. Окружность с центром в точке М пересечет окружность с центром в точке А, пусть эта точка будет М1. Проведем луч АМ1. Затем на луче АМ1 отложим отрезок АС, равный отрезку Р2Q2. Соединим точки В и С отрезком. Полученный треугольник АВС - искомый.

Теперь докажем, что полученный треугольник АВС искомый. На самом деле отрезок АВ равен отрезку P1Q1 и отрезок АС равен отрезку P2Q2 по построению. Угол альфа также по построению равен углу САВ. При данном ходе построения для любых данных отрезков P1Q1 и P2Q2 и неразвернутом угле альфа искомый треугольник построить можно. Так как прямую а и точку А на ней можно выбрать произвольно, то существует бесконечно много треугольников, удовлетворяющих условиям задачи. Все эти треугольники равны друг другу по первому признаку равенства треугольников, поэтому принято говорить, что данная задача имеет единственное решение.

§ 2 Построение треугольника по стороне и двум прилежащим к ней углам

Теперь рассмотрим задачу построения треугольника по стороне и двум прилежащим к ней углам.

Итак, нам дан отрезок PQ и два угла альфа и бета. Проведем прямую а и отметим на ней произвольную точку А. Отложим от точки А отрезок АВ, равный отрезку PQ. Затем построим угол М1АВ с вершиной в точке А, равный углу альфа, и угол М2ВА с вершиной в точке В, равный углу бета. Точка пересечения лучей АМ1 и ВМ2 будет точка С. Треугольник АВС искомый.

Докажем это: отрезок АВ равен отрезку PQ по построению, также по построению угол САВ равен углу альфа, а угол СВА равен углу бета.

Как известно, сумма углов в треугольнике равна 180 градусов, поэтому при данном ходе построения искомый треугольник АВС возможно построить только, если сумма углов альфа и бета будет меньше 180 градусов. Если же сумма данных углов будет больше или равна 180 градусом, треугольник построить невозможно.

В этой задаче, как и в предыдущей, прямую а и точку А на ней можно выбрать произвольно, а значит, существует бесконечно много треугольников, удовлетворяющих условиям задачи. Все эти треугольники равны друг другу по второму признаку равенства треугольников, поэтому говорят, что данная задача имеет единственное решение.

§ 3 Построение треугольника по трем сторонам

Построить треугольник по трем сторонам является третьей задачей построения треугольника.

Пусть нам даны три отрезка P1Q1, P2Q2 и P3Q3. необходимо построить треугольник АВС, в котором АВ равно P1Q1, ВС равно P2Q2 и СА равно P3Q3.

Проведем прямую а и на ней с помощью циркуля отложим отрезок АВ, равный отрезку P1Q1. Затем построим две окружности: одну - с центром в точке А и радиусом P3Q3, а другую - с центром в точке В и радиусом P2Q2. Пусть точка С - одна из точек пересечения этих окружностей. Проведя отрезки АС и ВС, получим искомый треугольник АВС. В самом деле, по построению АВ равно P1Q1, BC равно P2Q2 и СА равно P3Q3, то есть стороны треугольника равны данным отрезкам.

Рассмотренная задача не всегда имеет решение в силу действия неравенства треугольника, то есть в любом треугольнике сумма любых двух сторон больше третьей стороны, поэтому, если какой-нибудь из данных отрезков больше или равен сумме двух других, то нельзя построить треугольник, стороны которого равнялись бы данным отрезкам.

Список использованной литературы:

  1. Атанасян Л.С. Учебник: Геометрия. 7-9 классы: учеб. для общеобразоват. организаций / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М. : Просвещение, 2013. –383 с.
  2. Геометрия. Ч.I. Планиметрия: учебное пособие/ И.Б. Барский, Г.Н. Тимофеев. – Йошкар-Ола: изд-во Марийского гос. ун-та, 2006 и 2008. – 636с

D С Построение треугольника по двум сторонам и углу между ними. hk h 1. Построим луч а. 2. Отложим отрезок АВ, равный P 1 Q Построим угол, равный данному. 4. Отложим отрезок АС, равный P 2 Q 2. В А Δ АВС искомый. Дано: Отрезки Р 1 Q 1 и Р 2 Q 2, Q1Q1 P1P1 P2P2 Q2Q2 а k Док-во: По построению AB=P 1 Q 1, AC=P 2 Q 2, A= hk. Построить. Построение.


При любых данных отрезках AB=P 1 Q 1, AC=P 2 Q 2 и данном неразвернутом hk искомый треугольник построить можно. Так как прямую а и точку А на ней можно выбрать произвольно, то существует бесконечно много треугольников, удовлетворяющих условиям задачи. Все эти треугольники равны друг другу (по первому признаку равенства треугольников), поэтому принято говорить, что данная задача имеет единственное решение.


D С Построение треугольника по стороне и двум прилежащим к ней углам. h 1 k 1, h 2 k 2 h2h2 1. Построим луч а. 2. Отложим отрезок АВ, равный P 1 Q Построим угол, равный данному h 1 k Построим угол, равный h 2 k 2. В А Δ АВС искомый. Δ АВС искомый. Дано: Отрезок Р 1 Q 1 Q1Q1 P1P1 а k2k2 h1h1 k1k1 N Док-во: По построению AB=P 1 Q 1, В= h 1 k 1, А= h 2 k 2. Построить Δ. Построение.


С 1. Построим луч а. 2. Отложим отрезок АВ, равный P 1 Q Построим дугу с центром в т. А и радиусом Р 2 Q Построим дугу с центром в т.В и радиусом P 3 Q 3. В А Δ АВС искомый. Дано:Отрезки Р 1 Q 1, Р 2 Q 2, P 3 Q 3. Q1Q1 P1P1 P3P3 Q2Q2 а P2P2 Q3Q3 Построение треугольника по трем сторонам. Док-во: По построению AB=P 1 Q 1, AC=P 2 Q 2 CA= P 3 Q 3, т. е. стороны Δ ABC равны данным отрезкам. Построить Δ. Построение.


Задача не всегда имеет решение. Во всяком треугольнике сумма любых двух сторон больше третьей стороны, поэтому если какой-нибудь из данных отрезков больше или равен сумме двух других, то нельзя построить треугольник, стороны которого равнялись бы данным отрезкам.

Их суть заключается в том, чтобы построить какой-либо геометрический объект по какому-либо достаточному набору начальных условий имея под рукой только циркуль и линейку. Рассмотрим общую схему для выполнения таких задач:

    Анализ задачи.

    В эту часть входит установление связи между элементами, которые необходимо построить и начальными условиями задачи. После выполнения этого пункта у нас должен появиться план по решению нашей задачи.

    Построение.

    Здесь мы выполняем построения по плану, который был нами составлен выше.

    Доказательство.

    Здесь мы доказываем то, что построенная нами фигура действительно удовлетворяет начальным условиям задачи.

    Исследование.

    Здесь мы выясняем, при каких данных задача имеет одно решение, при каких несколько, а при каких ни одного.

Далее будем рассматривать задачи на построение треугольников по различным трем элементам. Здесь мы не будем рассматривать элементарные построения, таких как отрезок , угол и т.д. К этому моменту эти навыки уже у Вас должны иметься.

Построение треугольника по двум сторонами и углу между ними

Пример 1

Постройте треугольник, если нам даны две стороны и угол, который находится между этими сторонами.

Анализ.

Пусть нам даны отрезки $AB$ и $AC$ и угол $α$. Нам нужно построить треугольник $ABC$ с углом $C$ равным $α$.

Составим план построения:

  1. Принимая $AB$ за одну из сторон угла, отложим от нее угол $BAM$, равный углу $α$.
  2. На прямой $AM$ отложим отрезок $AC$.
  3. Соединим точки $B$ и $C$.

Построение.

Построим рисунок по составленному выше плану (рис. 1).

Доказательство.

Исследование.

Так как сумма углов треугольника равняется $180^\circ$. Значит, если угол α будет больше или равен $180^\circ$, то задача решений иметь не будет.

В другом случае решение есть. Так как прямая $a$ - произвольная прямая, то таких треугольников будет бесконечное количество. Но, так как они все равны между собой по первому признаку, то будем считать, что решение этой задачи единственно.

Построение треугольника по трем сторонам

Пример 2

Постройте треугольник, если нам даны три его стороны.

Анализ.

Пусть нам даны отрезки $AB$ и $AC$ и $BC$. Нам нужно построить треугольник $ABC$.

Составим план построения:

  1. Проведем прямую $a$ и построим на ней отрезок $AB$.
  2. Построим $2$ окружности: первую с центром $A$ и радиусом $AC$, и вторую с центром $B$ и радиусом $BC$.
  3. Соединим одну из точек пересечения окружностей (которая будет точкой $C$) с точками $A$ и $B$.

Построение.

Построим рисунок по составленному выше плану (рис. 2).

Доказательство.

Из построения видно, что все начальные условия выполнены.

Исследование.

Из неравенства треугольника мы знаем, что любая сторона должна быть меньше суммы двух других. Следовательно, когда такое неравенство не выполняется для исходных трех отрезков, задача решения иметь не будет.

Так как окружности из построения имеют две точки пересечения, то мы можем построить два таких треугольника. Но, так как они равны между собой по третьему признаку, то будем считать, что решение этой задачи единственно.

Построение треугольника по стороне и двум прилежащим к ней углам

Пример 3

Постройте треугольник, если нам дана одна стороны и углы $α$ и $β$, прилегающие к ней.

Анализ.

Пусть нам дан отрезок $BC$ и углы $α$ и $β$. Нам нужно построить треугольник $ABC$, где $∠B=α$, а $∠C=β$.

Составим план построения:

  1. Проведем прямую $a$ и построим на ней отрезок $BC$.
  2. Построим в вершине $B$ к стороне $BC$ угол $∠ K=α$.
  3. Построим в вершине $C$ к стороне $BC$ угол $∠ M=β$.
  4. Соединим точку пересечения (это и будет точка $A$) лучей $∠ K$ и $∠ M$ с точками $C$ и $B$,

Построение.

Построим рисунок по составленному выше плану (рис. 3).

Доказательство.

Из построения видно, что все начальные условия выполнены.

Исследование.

Так как сумма углов треугольника равняется $180^\circ$, то, если $α+β≥180^\circ$ задача решений иметь не будет.

В другом случае решение есть. Так как углы можем строить с двух сторон, то мы можем построить два таких треугольника. Но, так как они равны между собой по второму признаку, то будем считать, что решение этой задачи единственно.

Три доказанные в п. 188 теоремы о равенстве треугольников показывают, что треугольник вполне определен, если даны три его стороны, две стороны и угол, заключенный между ними, сторона и два прилегающих к ней угла (или вообще два каких-нибудь угла).

Существование треугольника, определенного заданием тех или иных конкретных величин сторон или углов, обнаруживается при решении задачи на построение треугольника по данным элементам: однозначность решения задачи на построение еще раз доказывает признаки равенства из п. 188. Сообразно трем признакам равенства возникают и три основные задачи на построение треугольников.

Задача 1. Даны три отрезка а, b, с. Построить треугольник, имеющий эти отрезки своими сторонами.

Решение. Пусть с - наибольший из трех отрезков: для того чтобы задача могла иметь решение, необходимо, чтобы выполнялось условие Будем считать, что это условие выполнено. На произвольной прямой (рис. 226) отложим в произвольном месте отрезок . Концы его примем за две вершины искомого треугольника. Третья вершина должна лежать на расстоянии b от точки А (или от точки В) и на расстоянии а от В (или А). Для построения недостающей вершины проводим окружность радиуса b с центром А и окружность радиуса а с центром В.

Эти две окружности пересекутся, так как по условию расстояние между их центрами меньше суммы радиусов и больше их разности, поскольку с - наибольший отрезок среди данных. Получаются две точки пересечения С и С, т. е. два возможных положения вершины С; соответственные два треугольника, однако, равны, как симметрично расположенные относительно АВ. На рис. 226 также показано, как получить еще два положения третьей вершины, если поменять местами радиусы окружностей.

Задача 2. Построить треугольник по двум сторонам и углу, заключенному между ними.

Задача 3. Построить треугольник по стороне и прилежащим к ней углам, сумма которых меньше .

При анализе признаков равенства треугольников обращают на себя внимание два обстоятельства:

1) Нет признаков, в которых равенство треугольников обеспечивалось бы только равенством трех углов. Это объясняется тем, что два треугольника, имеющие равные углы, еще не обязательно равны (подобные треугольники, см. подробнее гл. XVI).

2) Признак равенства треугольников по двум сторонам требует равенства не произвольных углов, но непременно заключенных между равными сторонами. Чтобы выяснить причину этого, поставим следующую задачу.

Задача 4. Построить треугольник по двум сторонам и углу, лежащему против одной из них.

Решение. Пусть, например, даны стороны а и b и угол а, лежащий против а (рис. 227). Для построения треугольника отложим отрезок b на произвольной прямой АС и из одной его вершины, например А, проведем луч AM под углом а к отрезку АС. Неизвестная третья сторона треугольника должна лежать на этом луче; ее конец и есть недостающая вершина треугольника. Известно, однако, что эта третья вершина лежит на расстоянии а от С и, значит, помещается на окружности с центром С радиуса а. Проведем такую окружность. Точки ее пересечения с лучом AM дадут возможные положения третьей вершины. Так как окружность и луч могут не иметь общих точек, иметь одну или две общие точки, то задача может не иметь решений, иметь одно или два решения.

На рис. 227 представлен случай, когда угол а острый, и четыре варианта для стороны для которых задача, соответственно, не имеет решений, имеет одно решение, два решения и снова одно решение. Показаны оба решения для Полный анализ этой задачи дается в п. 223 в связи с задачами на решение треугольников.

Можно ставить и другие разнообразные задачи на построение треугольников по тем или иным данным. Во всех случаях для возможности построения треугольника должны быть заданы либо три какие-нибудь его линейных элемента (т. е. три отрезка: стороны, медианы, высоты и т. п.), либо два отрезка и один угол, либо один отрезок и два угла.

Задача 5. Даны две стороны а, с треугольника и медиана . Построить треугольник.

Решение. Начнем решение задачи с анализа. Так называется этап решения, когда мы условно допускаем, что задача уже решена, и выясняем такие ее особенности, которые и в самом деле помогут нам ее решить. Итак, допустим, что треугольник ABC (рис. 228, а) - искомый. Тогда в нем

Заметим, что отрезок ВМ по определению медианы составляет половину с, т. е. может считаться известным. Но теперь в треугольнике ВМС известны все три стороны! Здесь ключ к решению задачи, остальное уже просто. Мы строим (рис. 228, б) треугольник ВМС по трем сторонам и продолжаем затем сторону ВМ на расстояние, равное , получая тем самым третью вершину А треугольника. Правильность выполненного построения ясна.

Условие разрешимости задачи состоит в возможности построить «частичный» треугольник по стороне а, медиане и половине другой стороны.




Top