Видеоурок «Рациональные уравнения. Решение целых и дробно рациональных уравнений

Урок – практикум по алгебре в 8 классе «Решение дробных рациональных уравнений»

Цели урока:

образовательная – повторение, обобщение и систематизация материала темы; совершенствование графической культуры; контроль усвоения знаний и умений.

развивающая - развитие математического и общего кругозора, внимания, умений сравнивать, классифицировать, проводить анализ и самоанализ.

воспитательная - воспитание интереса к математике, ее истории и приложениям; воспитание активности, общей культуры.

Оборудование: м/медиапроектор, презентация, ПК, «Историческое сообщение», опорные конспекты-задания, таблицы-заготовки с графиками на доске.

    Мотивационно - ориентировочный этап

Актуализация знаний

Из предложенных заданий на доске выберите те, которые позволяют повторить:

а) допустимые значения переменной;

б) выделение полного квадрата двучлена;

в) расположение в системе координат графика пропорциональности;

г) вертикальные и горизонтальные асимптоты графика функции;

д) способы решения дробных рациональных уравнений (способы записать на доске, когда дети их назовут):

1) графический;

2) с помощью пропорции – по основному свойству пропорции;

3) преобразование уравнения с использованием условия равенства дроби нулю;

4) условие равенства дробей, у которых одинаковые знаменатели.

Задания на слайде (устная работа)

1. При каких значениях переменной существует данная дробь

а) б)
?

2. Разложите на множители

а) 16x 2 +8xy+y 2 б) x 2 -6x+9

3. Каково расположение графиков функций в системе координат и чем оно определяется

а)
б)

4. Решите уравнение

а)
б)

5. Составьте задачу по рисунку и уравнение:


6. Проведите классификацию уравнений по способам решения

а) х 2 – 11х + 30 = 0;

б). 8х 2 - 7х = 0;

в). х 2 - 4 = 0;

г). х(4х + 9) = 0.;

д)
;

е)
;

ж)
;

II . Основной этап

а) Тренировочные задания (5 человек у доски, остальные в тетради, фронтальная проверка)

Решить на два варианта с «тихим» контролем у доски (графики заготовить).

Вариант 1

1. Решить графически уравнение

Вариант 2

        Решить графически уравнение

Ответ: -3; 2

2. Решить уравнение

2. Решить уравнение

Ответ: 0

Ответ: любое число, кроме 0.

Ответ: любое число, кроме 0.

б) Исторический материал об Омаре Хайяме . (Приложение 3)

Задача. Решить уравнение.

Ешение х

, где
,

в) Дифференцированная работа по группам с элементами самоконтроля на 3 варианта- по уровням.

Я предлагаю вам побывать в роли учителя математики и откорректировать предложенные вам решения уравнений, причем задание у всех разное. Не забудьте отметить выполнение на опорном конспекте по уроку.

Самопроверка по решению у доски (3 ученика)- от каждой группы выходит 1 человек

III.ФИЗМИНУТКА

Упражнения для глаз с использованием геометрических фигур, расположенных на стене классной комнаты.

Цель: расширение зрительной активности, снятие утомления на уроке.

На листе ватмана изображаются различные цветные фигуры (квадрат, круг, ромб и.т.д.), вырезаются и размещаются на стене в кабинете.

Во время физминутки дается задание последовательно перемещать взгляд с одной фигуры на другую (самостоятельно) или по названию фигуры (цвета) учителем. Упражнение можно выполнять сидя и стоя.

Упражнения: «8», «знак бесконечности», «геометрическая зарядка».

Цель: снятие зрительного напряжения.

Задание 1: нарисуйте движениями глаз на доске цифру 8 .

Задание 2: нарисуйте движениями глаз на доске знак бесконечности .

Данное упражнение можно разнообразить в виде стихотворной инструкции:

Нарисуй глазами треугольник.
Теперь его переверни вершиной вниз.
И вновь глазами ты по периметру веди.
Рисуй восьмерку вертикально.
Ты головою не крути,
А лишь глазами осторожно
Ты вдоль по линиям води.
И на бочок ее клади.
Теперь следи горизонтально,
И в центре ты остановись.
Зажмурься крепко, не ленись.
Глаза открываем мы, наконец.
Зарядка окончилась. Ты – молодец

IV.ТВОРЧЕСКАЯ работа в парах: Нарисовать условие задачи, составить уравнение к задаче:

1. Расстояние между городами скорый поезд, идущий со скоростью 90 км/ч, проходит на 1,5 ч быстрее товарного, который идет со скоростью 60 км/ч. Каково расстояние между городами.

2. Катер прошел 40 км по течению реки и 6 км против течения, затратив на весь путь 3 ч. Какова собственная скорость катера, если скорость течения реки 3 км/ч?

3. Моторная лодка, скорость которой в стоячей воде 15 км/ч, прошла по течению реки 35 км, а против течения 25 км. На путь по течению реки она затратила столько же времени, сколько на путь против течения. Какова скорость течения реки?

5. Турист проплыл на лодке против течения реки 6 км и по озеру 15 км, затратив на путь по озеру на 1 ч больше, чем на путь по реке. Зная, что скорость течения реки равна 2 км/ч, найти скорость лодки при движении по озеру.

6. Катер, развивающий в стоячей воде скорость 20 км/ч, прошел 36 км против течения и 22 км по течению, затратив на весь путь 3 ч. Найти скорость течения реки.

7. Моторная лодка курсирует между двумя пристанями, расстояние между которыми по реке равно 4 км. На путь по течению у нее уходит на 3 мин меньше, чем на путь против течения. Чему равна скорость течения реки, если известно, что скорость лодки в стоячей воде равна 18 км/ч?


V.Закрепление изученного

А)№695 (а)- у доски с развернутым объяснением

Б) Самостоятельная работа в форме теста (2 варианта). Проверка по ключу на слайде.

А. 2х + 5 = 3(8 - х); Б.
В.
Г.

2. Даны выражения: 1)
2)
3)
. Какие из них не имеют смысл при у = 2?

А. 1 и 2; Б. 1 и 3; В. только 1; Г. 1, 2 и 3.

3. Уравнение
имеет корни:

А. 13; Б. -2 и 4; В. 13, -2 и 4; Г. нет решений.

4. Расстояние по реке между двумя деревнями равно 2 км. На путь туда и обратно моторная лодка затратила 22 мин. Чему равна собственная скорость лодки, если скорость течения реки равна 1 км/ч?

Пусть х км/ч – собственная скорость лодки. Какое из уравнений соответствует условию задачи?

А. 2(х + 1) + 2(х – 1) = 22; Б.
В.

Г.

5. Уравнение
имеет корни:

А. 2,5 и -5; Б. 2,5; В. -5 и 5; Г. 5, -5 и 2,5.

1. Какие из уравнений являются дробными рациональными?

А. 8х + 24 = 3(8 – х 2); Б. В. Г.

2. Даны выражения: 1)
2)
3)
Какие из них не имеют смысл при х = 0?

А. только 1; Б. только 2; В. 2 и 3; Г. 1, 2 и 3.

3. Уравнение
имеет корни:

А. 1 и 3; Б. -1, -3 и 11; В. 11; Г. нет решений.

4. Моторная лодка курсирует между двумя пристанями, расстояние между которыми по реке равно 4 км. На путь по течению у нее уходит на 3 мин меньше, чем на путь против течения. Чему равна скорость течения реки, если известно, что скорость лодки в стоячей воде равна 18 км/ч?

Пусть х км/ч – скорость течения реки. Какое из уравнений соответствует условию задачи?

А.
Б.
В.

Г. 4(18 + х) – 4(18 – х) = 3.

5. Уравнение
имеет корни:

А. 1 и 2; Б. 1; В. -2 и 2; Г. 2, -2 и 1.

Ключ к тесту:

№ варианта

VI.Домашнее задание: №690 (сильным – все, слабым 1 столбик, составить задачу, уравнение к ней и кто смогут -решить по рисунку) ПОДГОТОВИТЬСЯ К ПРОВЕРОЧНОЙ РАБОТЕ

Обратить внимание, что 4 варианта проверочной работы к следующему уроку на ЭЖ.

Закончить предложения с опорного конспекта:

Сегодня на уроке я…

Я понял, что…

Мне бы хотелось…

Я убедился в том, что…

VIII.ОЦЕНИВАНИЕ

ОЦЕНОЧНЫЙ ЛИСТ

Затрудняюсь

Знаю ли я АЛГОРИТМ РЕШЕНИЯ ДРОБНО-РАЦИОНАЛЬНОГО УРАВНЕНИЯ?

Умею ли я применять его при решении уравнений?

Смогу ли решать уравнения самостоятельно?

Как я оцениваю свою работу на уроке :

Устная работа

Найди ошибку в уравнении

Рисунок и уравнение к задаче

Я ставлю себе за урок

IX.Дополнительно:

Время интересной задачи: Земной шар опоясали ленточкой по экватору. Затем эту ленточку удлинили на 1 м и равномерно распределяли опять вокруг экватора. Пролезет ли в образовавшийся зазор кошка? /Длина экватора, радиус Земли в справочнике по физике/.

Решение. Пусть радиус Земли R см, тогда длина обруча, стягивающего его экватор, равна С = 2 П R см. Когда длину обруча увеличили на 1 м = 100 см, то длина нового обруча оказалась равной С 1 = 2 П R + 100 см, или
С 1 = 2 П R 1 см, где R 1 см - длина радиуса нового обруча. Здесь предполагается, что зазор на каждом участке экватора один и тот же и равен R 1 – R см.по формулам корней квадратного уравнения ; овладение навыками решения рациональных уравнений ... Урок -практикум . На уроке ...

МОУ «Ракитянская средняя общеобразовательная школа № 3

имени Н.Н. Федутенко»

Урок алгебры

«Решение дробных рациональных уравнений»

8 класс

Участник конкурса

Учитель математики

Цецорина С.Н.

п. Ракитное – 1

Тип урока: Закрепление знаний и способов действий

Формы работы: Парная, индивидуальная,групповая

Оборудование: 1. Презентация урока

2. Тексты заданий к проверке домашнего задания, работе

в группах, рефлекия

3. Оценочный лист

4. Открытки – мозаика

5. Отрывок песни «Русскому солдату»

Цели урока:

    Способствовать выработке умений и навыков решать дробные рациональные уравнения, созданию условий для взаимоконтроля, самоконтроля усвоения знаний и умений;

    способствовать закреплению навыка решения линейных уравнений и квадратных уравнений по формуле;

    применять приемы: обобщения, сравнения, выделения главного, переноса знаний в новую ситуацию, развитию математического кругозора, мышления и речи, внимания и памяти;

    содействовать воспитанию интереса к математике, активности, организованности, умения общаться, любви к родному краю.

Ход урока

    Организационный момент

Ребята, сегодня урок алгебры буду вести я. Меня зовут Светлана Николаевна. Я надеюсь, что урок пройдет в теплой дружеской атмосфере и мы, не смотря на все трудности, вместе добьемся цели.

«Уравнение – это золотой ключ,

открывающий все математические

сезамы» (С. Коваль)

И вы наверное поняли, чтобы проникнуть во все математические сезамы, необходимо научиться решать уравнения.

Ребята, тема урока «Дробные рациональные уравнения». Основными задачами являются:

1. Закрепление решения дробных рациональных уравнений, попутно повторить решение квадратных и линейных уравнений.

Я предлагаю следующую последовательность урока:

1. На этапе проверки домашнего задания проведем тестирование по теории и практике.

2. Актуализация знаний пройдет в форме фронтального опроса.

3. Затем Вас ожидает разноуровневая самостоятельная работа.

4. Итогом урока является оформление оценочного листа и выставление полученных Вами оценок.

    Проверка домашнего задания.

Для проверки домашнего задания я предлагаю вам ТЕСТ , в котором вы проверите себя по основным правилам. (работа в парах). Каждой паре предлагается 1 задание. Букву правильного ответа вписываем на доске в таблицу.

ТЕСТ

    Укажите правильный ответ на вопрос: «Из каких чисел можно извлечь точный квадратный корень?»

а) 64; 0,25; - 4; 7; 1.

с) 64; 0,25; 1.

    Укажите квадратное уравнение, записанное в стандартном виде:

а) ах 2 + b х + с = 0;

б) b х + ах 2 + с = 0.

3. Назовите коэффициенты квадратного уравнения 2 – 13х + 9 = 0

х) a = 5 , b = - 13 , c = 9

б) a = 5 , b = 9 , c = - 13

4. Правильно ли составлено уравнение, у которого первый коэффициент

3 , второй коэффициент (- 5) , свободный член 17:

б) - 5х 2 + 3х + 17 = 0;

а) 2 – 5х + 17 = 0

5. Какое из уравнений является дробным рациональным:

р)
.

6. Каков общий знаменатель у дробей:
и

а) (х + 2); б) (х – 2); н) (х + 2) (х – 2)

7. Какова область допустимых значений выражения

а) х
б) х
и х

8. Каковы корни уравнения х (х + 4) = 0

б) х = 0 и х = 4; я) х = 0 и х = - 4.

Задания при проверке показывают на экране.

Учащиеся работают в тетрадях. Получилось слово «Сахарная». Может кто –то знает эту улицу? Сейчас это улица Федутенко в поселке Ракитное -1 (Сахзавод), она получила это название в 1985 году к 40 –летию Победы в ВОВ, в честь Героя Советского Союза, летчицы, Надежды Никифоровны Федутенко, которая жила на этой улице, училась в нашей школе и в 2008 году школе присвоено ее имя. Я рассказала вам об этом не только потому, что я живу на этой улице, работаю в этой школе. А может вы скажите почему я об этом заговорила? Потому, что в этом году будет праздноваться 65 – летие Победы в ВОВ. Я очень хотела бы, чтобы вы об этом вспомнили и не забыли поздравить ветеранов, живущих рядом с вами..

    Актуализация опорных знаний

Чтобы успешно справиться со следующим заданием давайте напомним алгоритм решения квадратных уравнений. (Фронтальный опрос)

Памятка для решения дробных рациональных уравнений

Алгоритм решения дробных рациональных уравнений

    Найти общий знаменатель дробей, входящих в уравнение.

    Задать ОДЗ (область допустимых значений). Для этого приравнять знаменатель к нулю и решить полученное уравнение.

    Умножить обе части уравнения на общий знаменатель.

    Найти дополнительные множители к дробям.

    Решить получившееся целое уравнение.

    Исключить из корней те, которые обращают общий знаменатель в нуль.

В. Для вычисления квадратов чисел от 10 до 99 какой таблицей будем пользоваться?

О. Таблицей квадратов натуральных чисел, которая находится на форзаце учебника

    Работа в группах

У вас на столе находятся карточки с заданиями разных уровней: красный цвет – 5; зеленый – 4; желтый – 3. Вы выбираете сами себе уравнение. Решаете его самостоятельно. Можно в группе решить уравнение и другого уровня. Итог этой работы заключается в следующем: группой решить все уравнения и по ответам собрать свою мозаику. Приклеить ее на лист. Т.к. вы работаете в группах, то друг другу помогаете и по ответам, полученным при решении уравнений вы должны собрать мозаику, где обозначены пейзажи нашего поселка.

Карточка 1 (красная)

=

=

Карточка 2 (зеленая)

а)
=

=

б)
=

=

Карточка 3 (желтая)

а)
=

=
Учащиеся подсчитывают количество баллов и поставьте оценку в оценочный лист. Эти листы сдается учителю.

Оценка «5» - от 8 баллов и выше

Оценка «4» - 7 баллов

Оценка «3» - 4 – 6 баллов

Урок подходит к концу. Спасибо огромное за работу. Мне было легко работать с вами. А что вы можете сказать об уроке, о вашем состоянии на уроке? Прошу найти на столе карточки с рефлексией и назвать одним предложением ваше настроение. Достигли ли мы целей урока, все ли было понятно, и т.д. (по 1 ученику от группы)

    Рефлексия

    Я успеваю улыбнуться

    Сколько слов и надежд

    Давайте горевать и плакать откровенно

    Ой, как хорошо, хоть песни пой

    Доволен я своей судьбой

    Неприятность эту мы переживём

    Ах, зачем же этот день кончается

    Не надо зла таить

    Всё пока ещё в полном порядке

    Кап-кап-кап из глаз на платье

Оценочный лист

Ф.И.

Проверка домашнего задания

Фронтальный опрос

Работа по карточкам

Итог урока

Давайте познакомимся с рациональными и дробными рациональными уравнениями, дадим их определение, приведем примеры, а также разберем наиболее распространенные типы задач.

Yandex.RTB R-A-339285-1

Рациональное уравнение: определение и примеры

Знакомство с рациональными выражениями начинается в 8 классе школы. В это время на уроках алгебры учащиеся все чаще начинают встречать задания с уравнениями, которые содержат рациональные выражения в своих записях. Давайте освежим в памяти, что это такое.

Определение 1

Рациональное уравнение – это такое уравнение, в обеих частях которого содержатся рациональные выражения.

В различных пособиях можно встретить еще одну формулировку.

Определение 2

Рациональное уравнение – это такое уравнение, запись левой части которого содержит рациональное выражение, а правая – нуль.

Определения, которые мы привели для рациональных уравнений, являются равнозначными, так как говорят об одно и том же. Подтверждает правильность наших слов тот факт, что для любых рациональных выражений P и Q уравнения P = Q и P − Q = 0 будут равносильными выражениями.

А теперь обратимся к примерам.

Пример 1

Рациональные уравнения:

x = 1 , 2 · x − 12 · x 2 · y · z 3 = 0 , x x 2 + 3 · x - 1 = 2 + 2 7 · x - a · (x + 2) , 1 2 + 3 4 - 12 x - 1 = 3 .

Рациональные уравнения точно также, как и уравнения других видов, могут содержать любое количество переменных от 1 до нескольких. Для начала мы рассмотрим простые примеры, в которых уравнения будут содержать только одну переменную. А затем начнем постепенно усложнять задачу.

Рациональные уравнения делятся на две большие группы: целые и дробные. Посмотрим, какие уравнения будут относиться к каждой из групп.

Определение 3

Рациональное уравнение будет являться целым в том случае, если в записи левой и правой его частей содержатся целые рациональные выражения.

Определение 4

Рациональное уравнение будет являться дробным в том случае, если одна или обе его части содержат дробь.

Дробно рациональные уравнения в обязательном порядке содержат деление на переменную или же переменная имеется в знаменателе. В записи целых уравнений такого деления нет.

Пример 2

3 · x + 2 = 0 и (x + y) · (3 · x 2 − 1) + x = − y + 0 , 5 – целые рациональные уравнения. Здесь обе части уравнения представлены целыми выражениями.

1 x - 1 = x 3 и x: (5 · x 3 + y 2) = 3: (x − 1) : 5 – это дробно рациональные уравнения.

К числу целых рациональных уравнений можно отнести линейные и квадратные уравнения.

Решение целых уравнений

Решение таких уравнений обычно сводится к преобразованию их в равносильные алгебраические уравнения. Достичь этого можно путем проведения равносильных преобразований уравнений в соответствии со следующим алгоритмом:

  • сначала получим ноль в правой части уравнения, для этого на необходимо перенести выражение, которое находится в правой части уравнения, в его левую часть и поменять знак;
  • затем преобразуем выражение в левой части уравнения в многочлен стандартного вида.

Мы должны получить алгебраическое уравнение. Это уравнение будет равносильным по отношению к исходному уравнению. Легкие случаи позволяют нам для решения задачи свести целое уравнение с линейному или квадратному. В общем случае мы решаем алгебраическое уравнение степени n .

Пример 3

Необходимо найти корни целого уравнения 3 · (x + 1) · (x − 3) = x · (2 · x − 1) − 3 .

Решение

Проведем преобразование исходного выражения с целью получить равносильное ему алгебраическое уравнение. Для этого произведем перенос выражения, содержащегося в правой части уравнения, в левую часть и заменим знак на противоположный. В итоге получим: 3 · (x + 1) · (x − 3) − x · (2 · x − 1) + 3 = 0 .

Теперь проведем преобразование выражения, которое находится в левой части в многочлен стандартного вида и произведем необходимые действия с этим многочленом:

3 · (x + 1) · (x − 3) − x · (2 · x − 1) + 3 = (3 · x + 3) · (x − 3) − 2 · x 2 + x + 3 = = 3 · x 2 − 9 · x + 3 · x − 9 − 2 · x 2 + x + 3 = x 2 − 5 · x − 6

У нас получилось свести решение исходного уравнения к решению квадратного уравнения вида x 2 − 5 · x − 6 = 0 . Дискриминант этого уравнения положительный: D = (− 5) 2 − 4 · 1 · (− 6) = 25 + 24 = 49 . Это значит, действительных корней будет два. Найдем их, воспользовавшись формулой корней квадратного уравнения:

x = - - 5 ± 49 2 · 1 ,

x 1 = 5 + 7 2 или x 2 = 5 - 7 2 ,

x 1 = 6 или x 2 = - 1

Проверим верность корней уравнения, которые мы нашли в ходе решения. Для этого числа, которые мы получили, подставим в исходное уравнение: 3 · (6 + 1) · (6 − 3) = 6 · (2 · 6 − 1) − 3 и 3 · (− 1 + 1) · (− 1 − 3) = (− 1) · (2 · (− 1) − 1) − 3 . В первом случае 63 = 63 , во втором 0 = 0 . Корни x = 6 и x = − 1 действительно являются корнями уравнения, данного в условии примера.

Ответ: 6 , − 1 .

Давайте разберем, что значит «степень целого уравнения». С этим термином мы будем часто встречаться в тех случаях, когда нам надо будет представить целое уравнение в виде алгебраического. Дадим определение понятию.

Определение 5

Степень целого уравнения – это степень алгебраического уравнения, равносильного исходному целому уравнению.

Если посмотреть на уравнения из примера, приведенного выше, можно установить: степень данного целого уравнения вторая.

Если бы наш курс ограничивался решением уравнений второй степени, то рассмотрение темы на этом можно было бы закончить. Но все не так просто. Решение уравнений третьей степени сопряжено с трудностями. А для уравнений выше четвертой степени и вовсе не существует общих формул корней. В связи с этим решение целых уравнений третьей, четвертой и других степеней требует от нас применения целого ряда других приемов и методов.

Чаще прочих используется подход к решению целых рациональных уравнений, который основан на методе разложения на множители. Алгоритм действий в этом случае следующий:

  • переносим выражение из правой части в левую с тем, чтобы в правой части записи остался нуль;
  • представляем выражение в левой части как произведение множителей, а затем переходим к совокупности нескольких более простых уравнений.
Пример 4

Найдите решение уравнения (x 2 − 1) · (x 2 − 10 · x + 13) = 2 · x · (x 2 − 10 · x + 13) .

Решение

Переносим выражение из правой части записи в левую с противоположным знаком: (x 2 − 1) · (x 2 − 10 · x + 13) − 2 · x · (x 2 − 10 · x + 13) = 0 . Преобразование левой части в многочлен стандартного вида нецелесообразно в связи с тем, что это даст нам алгебраическое уравнение четвертой степени: x 4 − 12 · x 3 + 32 · x 2 − 16 · x − 13 = 0 . Легкость преобразования не оправдывает всех сложностей с решением такого уравнения.

Намного проще пойти другим путем: вынесем за скобки общий множитель x 2 − 10 · x + 13 . Так мы придем к уравнению вида (x 2 − 10 · x + 13) · (x 2 − 2 · x − 1) = 0 . Теперь заменим полученное уравнение совокупностью двух квадратных уравнений x 2 − 10 · x + 13 = 0 и x 2 − 2 · x − 1 = 0 и найдем их корни через дискриминант: 5 + 2 · 3 , 5 - 2 · 3 , 1 + 2 , 1 - 2 .

Ответ: 5 + 2 · 3 , 5 - 2 · 3 , 1 + 2 , 1 - 2 .

Точно также мы можем использовать метод введения новой переменной. Этот метод позволяет нам переходить к равносильным уравнениям со степенями ниже, чем были степени в исходном целом уравнении.

Пример 5

Есть ли корни у уравнения (x 2 + 3 · x + 1) 2 + 10 = − 2 · (x 2 + 3 · x − 4) ?

Решение

Если мы сейчас попробуем свести целое рациональное уравнение к алгебраическому, то получим уравнение 4 степени, которое не имеет рациональных корней. Потому нам будет проще пойти другим путем: ввести новую переменную у, которая заменит в уравнении выражение x 2 + 3 · x .

Теперь мы будем работать с целым уравнением (y + 1) 2 + 10 = − 2 · (y − 4) . Перенесем правую часть уравнения в левую с противоположным знаком и проведем необходимые преобразования. Получим: y 2 + 4 · y + 3 = 0 . Найдем корни квадратного уравнения: y = − 1 и y = − 3 .

Теперь проведем обратную замену. Получим два уравнения x 2 + 3 · x = − 1 и x 2 + 3 · x = − 3 . Перепишем их как x 2 + 3 · x + 1 = 0 и x 2 + 3 · x + 3 = 0 . Используем формулу корней квадратного уравнения для того, чтобы найти корни первого уравнения из полученных: - 3 ± 5 2 . Дискриминант второго уравнения отрицательный. Это значит, что действительных корней у второго уравнения нет.

Ответ: - 3 ± 5 2

Целые уравнения высоких степеней попадаются в задачах достаточно часто. Пугаться их не нужно. Нужно быть готовым применить нестандартный метод их решения, в том числе и ряд искусственных преобразований.

Решение дробно рациональных уравнений

Начнем рассмотрение этой подтемы мы с алгоритма решения дробно рациональных уравнений вида p (x) q (x) = 0 , где p (x) и q (x) – целые рациональные выражения. Решение остальных дробно рациональных уравнений всегда можно свести к решению уравнений указанного вида.

В основу наиболее употребимого метода решения уравнений p (x) q (x) = 0 положено следующее утверждение: числовая дробь u v , где v – это число, которое отлично от нуля, равна нулю только в тех случаях, когда числитель дроби равен нулю. Следуя логике приведенного утверждения мы можем утверждать, что решение уравнения p (x) q (x) = 0 может быть сведено в выполнению двух условий: p (x) = 0 и q (x) ≠ 0 . На этом построен алгоритм решения дробных рациональных уравнений вида p (x) q (x) = 0:

  • находим решение целого рационального уравнения p (x) = 0 ;
  • проверяем, выполняется ли для корней, найденных в ходе решения, условие q (x) ≠ 0 .

Если это условие выполняется, то найденный корень Если нет, то корень не является решением задачи.

Пример 6

Найдем корни уравнения 3 · x - 2 5 · x 2 - 2 = 0 .

Решение

Мы имеем дело с дробным рациональным уравнением вида p (x) q (x) = 0 , в котором p (x) = 3 · x − 2 , q (x) = 5 · x 2 − 2 = 0 . Приступим к решению линейного уравнения 3 · x − 2 = 0 . Корнем этого уравнения будет x = 2 3 .

Проведем проверку найденного корня, удовлетворяет ли он условию 5 · x 2 − 2 ≠ 0 . Для этого подставим числовое значение в выражение. Получим: 5 · 2 3 2 - 2 = 5 · 4 9 - 2 = 20 9 - 2 = 2 9 ≠ 0 .

Условие выполняется. Это значит, что x = 2 3 является корнем исходного уравнения.

Ответ: 2 3 .

Есть еще один вариант решения дробных рациональных уравнений p (x) q (x) = 0 . Вспомним, что это уравнение равносильно целому уравнению p (x) = 0 на области допустимых значений переменной x исходного уравнения. Это позволяет нам использовать следующий алгоритм в решении уравнений p (x) q (x) = 0:

  • решаем уравнение p (x) = 0 ;
  • находим область допустимых значений переменной x ;
  • берем корни, которые лежат в области допустимых значений переменной x , в качестве искомых корней исходного дробного рационального уравнения.
Пример 7

Решите уравнение x 2 - 2 · x - 11 x 2 + 3 · x = 0 .

Решение

Для начала решим квадратное уравнение x 2 − 2 · x − 11 = 0 . Для вычисления его корней мы используем формулу корней для четного второго коэффициента. Получаем D 1 = (− 1) 2 − 1 · (− 11) = 12 , и x = 1 ± 2 3 .

Теперь мы можем найти ОДЗ переменной x для исходного уравнения. Это все числа, для которых x 2 + 3 · x ≠ 0 . Это то же самое, что x · (x + 3) ≠ 0 , откуда x ≠ 0 , x ≠ − 3 .

Теперь проверим, входят ли полученные на первом этапе решения корни x = 1 ± 2 3 в область допустимых значений переменной x . Мы видим, что входят. Это значит, что исходное дробное рациональное уравнение имеет два корня x = 1 ± 2 3 .

Ответ​​: x = 1 ± 2 3

Второй описанный метод решения проще первого в случаях, когда легко находится область допустимых значений переменной x , а корни уравнения p (x) = 0 иррациональные. Например, 7 ± 4 · 26 9 . Корни могут быть и рациональными, но с большим числителем или знаменателем. Например, 127 1101 и − 31 59 . Это позволяет сэкономить время на проведении проверки условия q (x) ≠ 0 : намного проще исключить корни, которые не подходят, по ОДЗ.

В тех случаях, когда корни уравнения p (x) = 0 целые, целесообразнее использовать первый из описанных алгоритмов решения уравнений вида p (x) q (x) = 0 . Быстрее сразу находить корни целого уравнения p (x) = 0 , после чего проверять, выполняется ли для них условие q (x) ≠ 0 , а не находить ОДЗ, после чего решать уравнение p (x) = 0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Пример 8

Найдите корни уравнения (2 · x - 1) · (x - 6) · (x 2 - 5 · x + 14) · (x + 1) x 5 - 15 · x 4 + 57 · x 3 - 13 · x 2 + 26 · x + 112 = 0 .

Решение

Начнем с рассмотрения целого уравнения (2 · x − 1) · (x − 6) · (x 2 − 5 · x + 14) · (x + 1) = 0 и нахождения его корней. Для этого применим метод решения уравнений через разложение на множители. Получается, что исходное уравнение равносильно совокупности четырех уравнений 2 · x − 1 = 0 , x − 6 = 0 , x 2 − 5 · x + 14 = 0 , x + 1 = 0 , из которых три линейных и одно квадратное. Находим корни: из первого уравнения x = 1 2 , из второго – x = 6 , из третьего – x = 7 , x = − 2 , из четвертого – x = − 1 .

Проведем проверку полученных корней. Определить ОДЗ в данном случае нам сложно, так как для этого придется провести решение алгебраического уравнения пятой степени. Проще будет проверить условие, по которому знаменатель дроби, которая находится в левой части уравнения, не должен обращаться в нуль.

По очереди подставим корни на место переменной х в выражение x 5 − 15 · x 4 + 57 · x 3 − 13 · x 2 + 26 · x + 112 и вычислим его значение:

1 2 5 − 15 · 1 2 4 + 57 · 1 2 3 − 13 · 1 2 2 + 26 · 1 2 + 112 = = 1 32 − 15 16 + 57 8 − 13 4 + 13 + 112 = 122 + 1 32 ≠ 0 ;

6 5 − 15 · 6 4 + 57 · 6 3 − 13 · 6 2 + 26 · 6 + 112 = 448 ≠ 0 ;

7 5 − 15 · 7 4 + 57 · 7 3 − 13 · 7 2 + 26 · 7 + 112 = 0 ;

(− 2) 5 − 15 · (− 2) 4 + 57 · (− 2) 3 − 13 · (− 2) 2 + 26 · (− 2) + 112 = − 720 ≠ 0 ;

(− 1) 5 − 15 · (− 1) 4 + 57 · (− 1) 3 − 13 · (− 1) 2 + 26 · (− 1) + 112 = 0 .

Проведенная проверка позволяет нам установить, что корнями исходного дробного рацинального уравнения являются 1 2 , 6 и − 2 .

Ответ: 1 2 , 6 , - 2

Пример 9

Найдите корни дробного рационального уравнения 5 · x 2 - 7 · x - 1 · x - 2 x 2 + 5 · x - 14 = 0 .

Решение

Начнем работу с уравнением (5 · x 2 − 7 · x − 1) · (x − 2) = 0 . Найдем его корни. Нам проще представить это уравнение как совокупность квадратного и линейного уравнений 5 · x 2 − 7 · x − 1 = 0 и x − 2 = 0 .

Используем формулу корней квадратного уравнения для поиска корней. Получаем из первого уравнения два корня x = 7 ± 69 10 , а из второго x = 2 .

Подставлять значение корней в исходное уравнение для проверки условий нам будет достаточно сложно. Проще будет определить ОДЗ переменной x . В данном случае ОДЗ переменной x – это все числа, кроме тех, для которых выполняется условие x 2 + 5 · x − 14 = 0 . Получаем: x ∈ - ∞ , - 7 ∪ - 7 , 2 ∪ 2 , + ∞ .

Теперь проверим, принадлежат ли найденные нами корни к области допустимых значений переменной x .

Корни x = 7 ± 69 10 - принадлежат, поэтому, они являются корнями исходного уравнения, а x = 2 – не принадлежит, поэтому, это посторонний корень.

Ответ: x = 7 ± 69 10 .

Разберем отдельно случаи, когда в числителе дробного рационального уравнения вида p (x) q (x) = 0 находится число. В таких случаях, если в числителе находится число, отличное от нуля, то уравнение не будет иметь корней. Если это число будет равно нулю, то корнем уравнения будет любое число из ОДЗ.

Пример 10

Решите дробное рациональное уравнение - 3 , 2 x 3 + 27 = 0 .

Решение

Данное уравнение не будет иметь корней, так как в числителе дроби из левой части уравнения находится отличное от нуля число. Это значит, что ни при каких значениях x значение приведенной в условии задачи дроби не будет равняться нулю.

Ответ: нет корней.

Пример 11

Решите уравнение 0 x 4 + 5 · x 3 = 0 .

Решение

Так как в числителе дроби находится нуль, решением уравнения будет любое значение x из ОДЗ переменной x .

Теперь определим ОДЗ. Оно будет включать все значения x , при которых x 4 + 5 · x 3 ≠ 0 . Решениями уравнения x 4 + 5 · x 3 = 0 являются 0 и − 5 , так как, это уравнение равносильно уравнению x 3 · (x + 5) = 0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 = 0 и x + 5 = 0 , откуда и видны эти корни. Мы приходим к тому, что искомой областью допустимых значений являются любые x , кроме x = 0 и x = − 5 .

Получается, что дробное рациональное уравнение 0 x 4 + 5 · x 3 = 0 имеет бесконечное множество решений, которыми являются любые числа кроме нуля и - 5 .

Ответ: - ∞ , - 5 ∪ (- 5 , 0 ∪ 0 , + ∞

Теперь поговорим о дробных рациональных уравнениях произвольного вида и методах их решения. Их можно записать как r (x) = s (x) , где r (x) и s (x) – рациональные выражения, причем хотя бы одно из них дробное. Решение таких уравнений сводится к решению уравнений вида p (x) q (x) = 0 .

Мы уже знаем, что мы можем получить равносильное уравнение при переносе выражения из правой части уравнения в левое с противоположным знаком. Это значит, что уравнение r (x) = s (x) равносильно уравнение r (x) − s (x) = 0 . Также мы уже разобрали способы преобразования рационального выражения в рациональную дробь. Благодаря этому мы без труда можем преобразовать уравнение r (x) − s (x) = 0 в тождественную ему рациональную дробь вида p (x) q (x) .

Так мы переходим от исходного дробного рационального уравнения r (x) = s (x) к уравнению вида p (x) q (x) = 0 , решать которые мы уже научились.

Следует учитывать, что при проведении переходов от r (x) − s (x) = 0 к p (x) q (x) = 0 , а затем к p (x) = 0 мы можем не учесть расширения области допустимых значений переменной x .

Вполне реальна ситуация, когда исходное уравнение r (x) = s (x) и уравнение p (x) = 0 в результате преобразований перестанут быть равносильными. Тогда решение уравнения p (x) = 0 может дать нам корни, которые будут посторонними для r (x) = s (x) . В связи с этим в каждом случае необходимо проводить проверку любым из описанных выше способов.

Чтобы облегчить вам работу по изучению темы, мы обобщили всю информацию в алгритм решения дробного рационального уравнения вида r (x) = s (x) :

  • переносим выражение из правой части с противоположным знаком и получаем справа нуль;
  • преобразуем исходное выражение в рациональную дробь p (x) q (x) , последовательно выполняя действия с дробями и многочленами;
  • решаем уравнение p (x) = 0 ;
  • выявляем посторонние корни путем проверки их принадлежности ОДЗ или методом подстановки в исходное уравнение.

Визуально цепочка действий будет выглядеть следующим образом:

r (x) = s (x) → r (x) - s (x) = 0 → p (x) q (x) = 0 → p (x) = 0 → о т с е и в а н и е п о с т о р о н н и х к о р н е й

Пример 12

Решите дробное рациональное уравнение x x + 1 = 1 x + 1 .

Решение

Перейдем к уравнению x x + 1 - 1 x + 1 = 0 . Преобразуем дробное рациональное выражение в левой части уравнения к виду p (x) q (x) .

Для этого нам придется привести рациональные дроби к общему знаменателю и упростить выражение:

x x + 1 - 1 x - 1 = x · x - 1 · (x + 1) - 1 · x · (x + 1) x · (x + 1) = = x 2 - x - 1 - x 2 - x x · (x + 1) = - 2 · x - 1 x · (x + 1)

Для того, чтобы найти корни уравнения - 2 · x - 1 x · (x + 1) = 0 , нам необходимо решить уравнение − 2 · x − 1 = 0 . Получаем один корень x = - 1 2 .

Нам осталось выполнить проверку любым из методов. Рассмотрим их оба.

Подставим полученное значение в исходное уравнение. Получим - 1 2 - 1 2 + 1 = 1 - 1 2 + 1 . Мы пришли к верному числовому равенству − 1 = − 1 . Это значит, что x = − 1 2 является корнем исходного уравнения.

Теперь проведем проверку через ОДЗ. Определим область допустимых значений переменной x . Это будет все множество чисел, за исключением − 1 и 0 (при x = − 1 и x = 0 обращаются в нуль знаменатели дробей). Полученный нами корень x = − 1 2 принадлежит ОДЗ. Это значит, что он является корнем исходного уравнения.

Ответ: − 1 2 .

Пример 13

Найдите корни уравнения x 1 x + 3 - 1 x = - 2 3 · x .

Решение

Мы имеем дело с дробным рациональным уравнением. Следовательно, будем действовать по алгоритму.

Перенесем выражение из правой части в левую с противоположным знаком: x 1 x + 3 - 1 x + 2 3 · x = 0

Проведем необходимые преобразования: x 1 x + 3 - 1 x + 2 3 · x = x 3 + 2 · x 3 = 3 · x 3 = x .

Приходим к уравнению x = 0 . Корень этого уравнения – нуль.

Проверим, не является ли этот корень посторонним для исходного уравнения. Подставим значение в исходное уравнение: 0 1 0 + 3 - 1 0 = - 2 3 · 0 . Как видите, полученное уравнение не имеет смысла. Это значит, что 0 – это посторонний корень, а исходное дробное рациональное уравнение корней не имеет.

Ответ: нет корней.

Если мы не включили в алгоритм другие равносильные преобразования, то это вовсе не значит, что ими нельзя пользоваться. Алгоритм универсален, но он создан для того, чтобы помогать, а не ограничивать.

Пример 14

Решите уравнение 7 + 1 3 + 1 2 + 1 5 - x 2 = 7 7 24

Решение

Проще всего будет решить приведенное дробное рациональное уравнение согласно алгоритму. Но есть и другой путь. Рассмотрим его.

Отнимем от правой и левой частей 7 , получаем: 1 3 + 1 2 + 1 5 - x 2 = 7 24 .

Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть, 3 + 1 2 + 1 5 - x 2 = 24 7 .

Вычтем из обеих частей 3: 1 2 + 1 5 - x 2 = 3 7 . По аналогии 2 + 1 5 - x 2 = 7 3 , откуда 1 5 - x 2 = 1 3 , и дальше 5 - x 2 = 3 , x 2 = 2 , x = ± 2

Проведем проверку для того, чтобы установить, являются ли найденные корни корнями исходного уравнения.

Ответ: x = ± 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Уравнение» мы ввели выше в § 7. Сначала напомним, что такое рациональное выражение. Это - алгебраическое выражение, составленное из чисел и переменной х с помощью операций сложения, вычитания, умножения, деления и возведения в степень с натуральным показателем.

Если r(х) - рациональное выражение, то уравнение r(х) = 0 называют рациональным уравнением.

Впрочем, на практике удобнее пользоваться несколько более широким толкованием термина «рациональное уравнение»: это уравнение вида h(x) = q(x), где h(x) и q(x) - рациональные выражения.

До сих пор мы могли решить не любое рациональное уравнение, а только такое, которое в результате различных преобразований и рассуждений сводилось к линейному уравнению . Теперь наши возможности значительно больше: мы сумеем решить рациональное уравнение, которое сводится не только к линейно-
му, но и к квадратному уравнению.

Напомним, как мы решали рациональные уравнения раньше, и попробуем сформулировать алгоритм решения.

Пример 1. Решить уравнение

Решение. Перепишем уравнение в виде

При этом, как обычно, мы пользуемся тем, что равенства А = В и А - В = 0 выражают одну и ту же зависимость между А и В. Это и позволило нам перенести член в левую часть уравнения с противоположным знаком.

Выполним преобразования левой части уравнения. Имеем


Вспомним условия равенства дроби нулю: тогда, и только тогда, когда одновременно выполняются два соотношения:

1) числитель дроби равен нулю (а = 0); 2) знаменатель дроби отличен от нуля ).
Приравняв нулю числитель дроби в левой части уравнения (1), получим

Осталось проверить выполнение второго указанного выше условия. Соотношение означает для уравнения (1), что . Значения х 1 = 2 и х 2 = 0,6 указанным соотношениям удовлетворяют и потому служат корнями уравнения (1), а вместе с тем и корнями заданного уравнения.

1) Преобразуем уравнение к виду

2) Выполним преобразования левой части этого уравнения:

(одновременно изменили знаки в числителе и
дроби).
Таким образом, заданное уравнение принимает вид

3) Решим уравнение х 2 - 6x + 8 = 0. Находим

4) Для найденных значений проверим выполнение условия . Число 4 этому условию удовлетворяет, а число 2 - нет. Значит, 4 - корень заданного уравнения, а 2 - посторонний корень.
О т в е т: 4.

2. Решение рациональных уравнений методом введения новой переменной

Метод введения новой переменной вам знаком, мы не раз им пользовались. Покажем на примерах, как он применяется при решении рациональных уравнений.

Пример 3. Решить уравнение х 4 + х 2 - 20 = 0.

Решение. Введем новую переменную у = х 2 . Так как х 4 = (х 2) 2 = у 2 , то заданное уравнение можно переписать в виде

у 2 + у - 20 = 0.

Это - квадратное уравнение, корни которого найдем, используя известные формулы ; получим у 1 = 4, у 2 = - 5.
Но у = х 2 , значит, задача свелась к решению двух уравнений:
x 2 =4; х 2 =-5.

Из первого уравнения находим второе уравнение не имеет корней.
Ответ: .
Уравнение вида ах 4 + bx 2 +c = 0 называют биквадратным уравнением («би» - два, т. е. как бы «дважды квадратное» уравнение). Только что решенное уравнение было именно биквадратным. Любое биквадратное уравнение решается так же, как уравнение из примера 3: вводят новую переменную у = х 2 , решают полученное квадратное уравнение относительно переменной у, а затем возвращаются к переменной х.

Пример 4. Решить уравнение

Решение. Заметим, что здесь дважды встречается одно и то же выражение х 2 + Зх. Значит, имеет смысл ввести новую переменную у = х 2 + Зх. Это позволит переписать уравнение в более простом и приятном виде (что, собственно говоря, и составляет цель введения новой переменной - и запись упроща
ется, и структура уравнения становится более ясной):

А теперь воспользуемся алгоритмом решения рационального уравнения.

1) Перенесем все члены уравнения в одну часть:

= 0
2) Преобразуем левую часть уравнения

Итак, мы преобразовали заданное уравнение к виду


3) Из уравнения - 7у 2 + 29у -4 = 0 находим (мы с вами уже решили довольно много квадратных уравнений, так что всегда приводить в учебнике подробные выкладки, наверное, не стоит).

4) Выполним проверку найденных корней с помощью условия 5 (у - 3) (у + 1). Оба корня этому условию удовлетворяют.
Итак, квадратное уравнение относительно новой переменной у решено:
Поскольку у = х 2 + Зх, а у, как мы установили, принимает два значения: 4 и , - нам еще предстоит решить два уравнения: х 2 + Зх = 4; х 2 + Зх = . Корнями первого уравнения являются числа 1 и - 4, корнями второго уравнения - числа

В рассмотренных примерах метод введения новой переменной был, как любят выражаться математики, адекватен ситуации, т. е. хорошо ей соответствовал. Почему? Да потому, что одно и то же выражение явно встречалось в записи уравнения несколько раз и был резон обозначить это выражение новой буквой. Но так бывает не всегда, иногда новая переменная «проявляется» только в процессе преобразований. Именно так будет обстоять дело в следующем примере.

Пример 5. Решить уравнение
х(х- 1)(x-2)(x-3) = 24.
Решение. Имеем
х(х - 3) = х 2 - 3х;
(х - 1)(x - 2) = x 2 -Зx+2.

Значит, заданное уравнение можно переписать в виде

(x 2 - 3x)(x 2 + 3x + 2) = 24

Вот теперь новая переменная «проявилась»: у = х 2 - Зх.

С ее помощью уравнение можно переписать в виде у (у + 2) = 24 и далее у 2 + 2у - 24 = 0. Корнями этого уравнения служат числа 4 и -6.

Возвращаясь к исходной переменной х, получаем два уравнения х 2 - Зх = 4 и х 2 - Зх = - 6. Из первого уравнения находим х 1 = 4, х 2 = - 1; второе уравнение не имеет корней.

О т в е т: 4, - 1.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки


Top