За генный полиморфизм приходится платить

Мутации -- основной источник генетического полиморфизма, т.е. наличия в популяции нескольких аллелей одного локуса. Полиморфная природа ДНК позволила разработать системы методов генетического и психогенетического анализа, которые позволяют определить и картировать целый ряд генов, вовлеченных в формирование индивидуальных различий по исследуемым поведенческим признакам. Так например, использование полиморфных маркёров ДНК позволило картировать ген на коротком плече хромосомы 4, ответственный за развитие хореи Гентингтона.

В качестве примера рассмотрим два типа ДНК маркёров: полиморфизм длины рестрикционных фрагментов (Л/Х/"-полиморфизм) и полиморфизм повторяющихся комбинаций нуклеотидов (STR-no-лиморфизм). Для изучения полиморфности (этот процесс также называется тайпингом ДНК) ДНК выделяется из клеток крови или любых других клеток организма, содержащих ДНК (например, берется соскоб с внутренней стороны щеки). При использовании технологии RFLP, ДНК, под воздействием ферментов, распознающих специфические последовательности нуклеотидов в ДНК и избирательно разрушающих ее цепь в определенных местах, разрезается на куски-фрагменты. Такие ферменты впервые были найдены в бактериях, которые производят их с целью защиты от вирусной инфекции.

Существуют сотни таких «рестрицирующих» ферментов, каждый из которых разрезает ДНК в определенном месте, распознавая определенную последовательность оснований; этот процесс называется рестрикцией. Например, один из часто используемых ферментов, EcoRI, распознает последовательность GAA ТТС и разрезает молекулу ДНК между основаниями Си А. Последовательность GAATTC может быть представлена в геноме несколько тысяч раз. Если в определенном локусе эта последовательность различна у разных людей, то у тех из них, которые являются носителями измененной последовательности, фермент в данном локусе ее не разрежет. В результате ДНК геномов, несущих нестандартные последовательности, разрезана в данном локусе не будет и, следовательно, образует более длинный фрагмент. Таким способом распознается разница в структуре ДНК. В результате разреза «рестрицирующими» ферментами могут получиться два типа фрагментов, соответствующих данному локусу, -- длинный и короткий. Их также называют аллелями. По аналогии с «обычными» генами полиморфизмы могут быть гомозиготными по короткому фрагменту, гомозиготными по длинному фрагменту или гетерозиготными по длинному и короткому фрагментам.

Несмотря на то что существуют сотни «рестрицирующих» ферентов, распознающих различные последовательности ДНК, они, как выяснилось, способны отыскать только примерно 20% полиморфны участков ДНК. Были разработаны несколько других типов ДНК-маркёров, распознающих полиморфизмы других типов. Широко используется, например, полиморфизм повторяющихся комбинаций нуклеотидов (/5ТД-полиморфизм). Как уже упоминалось, по неизвестной пока причине в ДНК присутствуют повторяющиеся последовательности, состоящие из 2, 3 или более нуклеотидов. Количество таких повторов варьирует от генотипа к генотипу, и в этом смысле они также обнаруживают полиморфизм. Например, один генотип может быть носителем двух аллелей, содержащих по 5 повторов, другой -- носителем двух аллелей, содержащих по 7 повторов. Предполагается, что геном человека содержит примерно 50 000 локусов, включающих подобные повторяющиеся последовательности. Хромосомные координаты многих локусов, обнаруживающих ^ГЛ-полиморфизм, установлены и теперь используются для картирования структурных генов, служа координатами на хромосомных картах.

Таким образом, генетический полиморфизм, связанный с присутствием так называемых нейтральных (не изменяющих синтезируемый белок) мутаций, плодотворно используется в молекулярно-генетических, в том числе психогенетических, исследованиях, поскольку генетическую изменчивость, выявленную молекулярными методами, можно сопоставлять с изменчивостью фенотипов. Пока этот перспективный путь используется в подавляющем большинстве случаев для исследования разных форм патологии, дающих четко очерченные фенотипы. Однако есть все основания надеяться, что он будет включен и в изучение изменчивости нормальных психических функций. ...

Одним из наиболее замечательных биологических открытий XX столетия стало определение структуры ДНК. Расшифровка генетического кода, открытие механизмов транскрипции, трансляции и некоторых Других процессов на уровне ДНК являются фундаментом в строящемся здании психогенетики -- науки, одна из задач которой состоит в раскрытии секретов соотношения генов и психики. Современные представления о структуре и функциях ДНК коренным образом изменили наши представления о структуре и функционировании генов. Сегодня гены определяются не как абстрактные «факторы наследственности», а как функциональные отрезки ДНК, контролирующие синтез белка и Регулирующие активность других генов. Одним из основных источников изменчивости являются генные мутации. Своими успехами современная молекулярная генетика обязана открытию и использованию закономерностей мутирования ДНК Целью обнаружения и картирования генетических маркёров. Именно они позволят психогенетике перейти от популяционных характеристик к индивидуальным.

ЛЕКЦИЯ № 17

По медицинской биологии и генетике

Для студентов 1 курса

Лечебного, медико-профилактического и медико-диагностического

Факультетов

Тема: «ПОПУЛЯЦИОННО - ВИДОВОЙ УРОВЕНЬ

ОРГАНИЗАЦИИ ЖИВОГО.

ГЕНЕТИЧЕСКИЙ ПОЛИМОРФИЗМ ПОПУЛЯЦИИ ЧЕЛОВЕКА».

Время - 90 мин.

Учебные и воспитательные цели:

1. Знать экологическую и генетическую характеристики популяций.

2. Ознакомить с особенностями популяционной структуры человечества.

3. Указать на влияние элементарных эволюционных факторов на популяцию человека.

4. Ознакомить с частотой наследственных заболеваний в человеческих популяциях.

ЛИТЕРАТУРА:

1. Бекиш О.-Я. Л. Медицинская биология. Курс лекций для студентов мед. ВУЗов. - Витебск, 2000 с. 296-309.

2. Биология /Под ред.В.Н. Ярыгина/ 1-я книга - М.: Вш,1997. с. 32-49.

3. О.-Я. Л. Бекиш, Л.А. Храмцова. Практикум по мед. биологии. - Изд. «Белый Ветер», 2000 - с. 135-141.

МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ

1. Мультимедийная презентация.


РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ


Слайд 3

Виды живых организмов представлены популяциями. Популяция – достаточно многочисленная совокупность особей одного вида в течение длительного времени населяющих определенную территорию, внутри которой осуществляется свободное скрещивание и которая изолирована от соседних совокупностей особей.

Популяция представляет экологическое, морфофизиологическое и генетическое единство особей вида. В эволюционном процессе она является неделимой единицей, т.е. является самостоятельной эволюционной структурой. Популяция является элементарной эволюционной единицей.



Эволюционируют не особи, а группы особей - популяции. Это самая мелкая из групп, способная к самостоятельной эволюции. Популяции характеризуются экологическими и генетическими особенностями.

Слайд 4

Экологическаяхарактеристика - величина занимаемой территории, плотность, численность особей, возрастная и половая структура, популяционная динамика.

Слайд 5

Генетическая характеристика - генофонд популяции (полный набор генов популяции). Генофонд описывают в частотах встречаемости аллельных вариантов генов или концентрации.

Слайд 6

Генофонд популяции характеризуется:

1) Единством . Единство генофонда популяции заключается в стремлении вида, как закрытой системы, сохранять свою однородность по наследственным свойствам.

2) Генетическим полиморфизмом. Природные популяции гетерогенны, они насыщены мутациями. При отсутствии давления внешних факторов эта гетерогенность находится в определенном равновесии.

3) Динамическим равновесием генов .

Слайд 7

В популяцию входят особи как с доминантными так и рецессивными признаками, не находящимися под контролем естественного отбора. Однако, доминантная аллель не вытесняет рецессивную. Обнаруженная закономерность называется законом Харди-Вайнберга для идеальной популяции. Это популяция с большой численностью, свободным скрещиванием (панмиксия), отсутствием мутаций, миграций и естественного отбора.

В идеальной популяции соотношение генотипов доминантных гомозигот АА , гетерозигот Аа и рецессивных гомозигот аа остаются постоянным:

Слайд 8

Если частота гена А равна р , а частота гена а равна q , то их концентрация Ар + аq = 1.

Сочетание гамет дает распределение генотипов по формуле:

♀ ♂ Ар (0,5) аq (0,5)
Ар (0,5) АА р 2 0,25 Аа рq 0,25
аq (0,5) Аа рq 0,25 аа q 2 0,25

Формула закона Харди-Вайнберга:

(Ар + аq)(Ар + аq) = АА р 2 + 2Аа рq + ааq 2 = (Ар + аq) 2 = 1

Величины р 2 , 2рq и q 2 - остаются постоянными этим объясняется тот факт, что особи с рецессивными признаками сохраняются наряду с доминантными. Соотношение гомо- и гетерозигот не меняется при разных вариантах реципрокных скрещиваний:

Закон Харди-Вайнберга:

«В панмиксной большой популяции, где нет отбора, мутаций, миграций, наблюдается постоянство распределения гомо- и гетерозигот. Зная частоту рецессивного гена, можно по формуле определить частоту доминантного аллеля и наоборот».

Слайд 9

В генетике человека, популяция – это группа людей, занимающих определенную территорию и свободно вступающих в брак. По численности они бывают большие и малые. Крупные популяции человека состоят не из одной, а нескольких антропологических групп, отличающихся по происхождению и рассеянных на больших территориях. Такие популяции включают более 4 тыс. человек. Человеческая популяция не является панмиксной, а представляет огромную совокупность многочисленных замкнутых групп.

Слайд 10

Эволюционные факторы, действующие на популяции людей, приводят к изменению генофонда. Влияние элементарных эволюционных факторов на изменение генофонда человеческих популяций сводится к действию мутационного процесса, миграциям, дрейфу генов, естественному отбору.

Слайд 11

Мутационный процесс является постоянно действующим элементарным эволюционным фактором. Он обеспечивает изменчивость популяции по отдельным генам. Мутации являются элементарным эволюционным материалом. Частота возникновения отдельных спонтанных мутаций находится в пределах 10 -4 - 10 -8 . Давление мутационного процесса определяется изменением частоты аллеля по отношению к другому. Мутационный процесс постоянно поддерживает гетерогенность популяции, однако численность преобладания гетерозигот Аа над гомозиготами аа существенна, так как большинство патологических мутаций рецессивно. Учитывая большое количество генов у человека, следует предположить, что до 10% его гамет несут мутантные гены. Доминантные мутации проявляются уже в первом поколении и подвергаются действию естественного отбора сразу. Рецессивные - накапливаются, проявляются фенотипически только в гомозиготном состоянии. Накопление мутантных аллелей создает гетерогенность популяции и способствует комбинативной изменчивости. Средняя степень гетерозиготности у человека составляет 6,7%, а в целом у позвоночных - 6,0%. Учитывая, что у человека имеется около 32000 структурных генов, то это означает, что каждый человек гетерозиготен более чем по 2000 локусам. При этом, теоретически возможное число различных типов гамет составляет 2 2150 . Такое число гамет не может образоваться не только у отдельного человека, но и у всего человечества за все время его существования. Это значение значительно больше числа протонов и нейтронов во Вселенной.

Насыщенность популяции рецессивными генами снижает приспособленность особей и называется генетическим грузом. Наличием генетического груза в человеческих популяциях объясняется появлением 5% потомков с генетическими дефектами.

Слайд 12

Дрейф генов - это колебания частот генов в ряду поколений, вызываемые случайными причинами, например малочисленностью популяций. Дрейф генов – процесс совершенно случайный и относится к особому классу явлений, называемых ошибками выборки. Общее правило состоит в том, что величина ошибки выборки находится в обратной зависимости от величины выборки . Применительно к живым организмам это означает, что чем меньше число скрещивающихся особей в популяции, тем больше изменений, обусловленных дрейфом генов, будут претерпевать частоты аллелей.

Случайный рост частоты одной какой-либо мутации обычно обусловливается преимущественным размножением в изолированных популяциях. Это явление называется «эффектом родоначальника» . Он возникает, когда несколько семей создают новую популяцию на новой территории. В ней поддерживается высокая степень брачной изоляции, что способствует закреплению одних аллелей и элиминацию других. Последствия «эффекта» - неравномерное распределение наследственных заболеваний человеческих популяций на земле.

Случайные изменения частот аллелей, подобные тем, которые обусловлены «эффектом родоначальника», возникают и в случае, если в популяции в процессе эволюции происходит резкое сокращение численности.

Дрейф генов приводит к:

1) изменению генетической структуры популяций: усилению гомозиготности генофонда;

2) уменьшению генетической изменчивости популяций;

3) дивергенции популяций.

Слайд 13

Изоляция - это ограничение свободы скрещивания. Она способствует дивергенции - разделению популяций на отдельные группы и изменению частот генотипов. В человеческих популяциях более существенной является эколого-этологическая изоляция. Она включает религиозные, морально-этические ограничения браков, сословное, клановое, имущественное, профессиональное и другие. Изоляции популяций приводят к родственным бракам - инбридингу и дрейфу генов. Родственные браки бывают:

1) инцестные (запретные) - между родственниками первой степени;

2) кровнородственные - между родственниками второй и третьей степенью.

Они приводят к проявлению рецессивных патологических генов в гомозиготном состоянии, что способствует смертности.

Слайд 14

Эффект близкородственных браков в Японии по данным W. J. Schull и J. V. Neel

Слайд 15

Миграция или поток генов - это перемещение особей из одной популяции в другую и скрещивание иммигрантов с представителями местной популяции. Поток генов не изменяет частот аллелей у вида в целом, однако в локальных популяциях они могут измениться, если исходные частоты аллелей в них различны. Достаточно даже незначительной миграции, такой как одна особь на тысячу за поколение, для предотвращения дифференциации популяций умеренной величины.

Слайд 16

Естественный отбор выполняет в человеческих популяциях функцию стабилизации генофонда, а также поддержания наследственного разнообразия. Основное назначение действия естественного отбора сохранение особей с полезными и гибель с вредными признаками, а также дифференциальное размножение (вклад особи в генофонд популяции при избирательном размножении).

Частота некоторых генов в популяции человека меняется под влиянием отбора. Подтверждением действия отбора в популяциях человека служат факты спонтанных абортов и перинатальной смертности у человека. Так более 42% спонтанных абортов происходит вследствие летального эффекта хромосомных аномалий. Хромосомные аномалии вызывают спонтанные аборты, которые достигают в течение первого триместра беременности 70%, во втором – 30%, в третьем – 4%. Перинатальная смертность в 6,2% случаев обусловлена хромосомной патологией. Среди мертворождений - 6% имеют летальные хромосомные аномалии.

Действие отбора обеспечивает способность организма вносить вклад в генетический состав будущего поколения. Это осуществляется двумя путями:

1) отбор на выживаемость;

2) использование генетических факторов, влияющих на размножение.

Изменение в генофондах популяций всегда происходит под влиянием сложного комплекса эволюционных факторов. Важное значение имеет соотношение отбора и давлений мутаций. Если данный аллель поддерживается отбором, тогда носители этого аллеля, как более приспособленные, характеризуются преимущественным размножением. В результате отбор вытесняет все другие аллели. Естественный отбор в человеческих популяциях действует как против гомозигот (доминантных и рецессивных), так и гетерозигот.

Слайд 17

Слайд 18

Влияние элементарных эволюционных факторов на генетическое разнообразие популяций.

Слайд 19

Генетический полиморфизм популяций человека.

Полиморфизм (многоформность) - любое разнообразие форм одного и того же вида организмов. Полиморфизм является наиболее универсальным явлением жизни. Дж. Б.С. Холдейн назвал человека самым полиморфным видом на Земле. У человека полиморфны практически все признаки (цвет глаз, волос, форма носа и черепа, группа крови и т.д.). Полиморфизм может быть результатом как дискретной внутрипопуляционной изменчивости наследственного характера, так и может определяться нормой реакции.

Слайд 20

Генетический полиморфизм возникает благодаря закреплению в популяции разных мутаций. Поэтому его классифицируют на: генный, хромосомный и геномный.

Слайд 21

Генный полиморфизм обусловлен наличием двух или более аллелей. Например, способность людей ощущать вкус фенилтиомочевины определяется доминантным аллелем (ТТ, Тt ), рецессивные гомозиготы (tt ) – его не ощущают. Наследование групп крови определяют три аллели - А, В, О. Хромосомный полиморфизм связан с хромосомными аберрациями, а геномный - с изменением наборов хромосом в кариотипе (гетероплоидия).

Слайд 22

Полиморфные генетические системы по их предполагаемой природе включают в себя три группы полиморфизмов: транзиторный, нейтральный, балансированный.

Слайд 23

Транзиторный полиморфизм объясняется сменой генетического состава популяции по рассматриваемому локусу. Один новый аллель в изменившихся условиях среды становится более выгодным и заменяет "исходный". Такой полиморфизм не может быть стабильным потому, что благодаря естественному отбору рано или поздно "исходный" аллель будет вытеснен новым и популяция будет мономорфной по "новому" аллелю. Скорость такого процесса нельзя заметить на протяжении жизни одного поколения.

Слайд 24

При нейтральном полиморфизме из-за случайных стохастических процессов (дрейф генов, эффект основателя) происходит случайное изменение частот аллелей. Например, возникновения различий в адаптивно-индифферентных признаках (приросшая или свободная мочка уха). Изменения генных частот по этим признакам осуществляется по механизму дрейфа генов, чем и объясняется нейтральный тип их эволюции.

Слайд 25

Балансированный полиморфизм - это полиморфизм, обусловленный сложным балансом между отбором против обеих гомозигот в пользу гетерозиготы. Рецессивный генотип подвергается более сильной элиминации, чем доминантный. Различия в скорости элиминации двух этих генотипов поддерживают постоянное, стабильное равновесное существование в популяции обеих аллелей с собственной для каждого частотой. Этим и объясняется стабильность такого полиморфизма. Наиболее полно изучены системы сбалансированного полиморфизма, связанные с отбором по малярии - аномальных гемоглобинов, талассемии, недостаточности эритроцитарного фермента глюкозо-6-фосфатдегидрогеназы. Стабильность этих полиморфизмов исчезает в связи с успехами борьбы с малярией. Балансированный полиморфизм превращается в транзиторный. Однако для снижения генных частот теперь уже полностью патологических генов, поскольку нет нужды в защите от малярии, должно пройти несколько десятков поколений.

Большое число открытых к настоящему времени полиморфных систем у человека со значительным числом аллелей приводит к тому, что практически каждый человек обладает уникальным набором генов, что позволяет говорить о биохимической и иммунологической индивидуальности личности. Это имеет большое значение в медицинской практике, особенно в судебной экспертизе.

Обычно наследственная предрасположенность носит мультифакториальный характер и определяется множеством генов с преобладающим эффектом одного или нескольких генов. Для установления этих генов пользуются биохимическими и иммунологическими методами антропогенетики. В настоящее время описано более 130 полиморфных генных локусов, кодирующих полиморфные белки. Это белки-ферменты, антигены, транспортные белки и т.д. Высказываются суждения, что около одной трети структурных генов человека должны иметь множественные аллели, т.е. кодировать полиморфные продукты метаболизма. В таком большом выборе для генетической рекомбинации заложена возможность возникновения индивидов с неблагоприятными сочетаниями генов, определяющих наследственную предрасположенность к заболеваниям. Учитывая генетический полиморфизм, для конкретного определения генетического фактора предрасположения к болезни сравнивают частоту встречаемости тех или иных полиморфных белков (антигенов) при данной болезни и в контрольной группе здоровых людей. Имеются многочисленные сведения по ассоциациям болезней с иммунологическими маркерами - антигенами групп крови АВО , системы HLA, с гаптоглобинами крови и с секретором. В частности, установлена предрасположенность людей со 2 группой (А ) крови к раку желудка, толстой кишки, яичника, шейки матки, ревматизму, ишемической болезни сердца, тромбоэмболиями и т.д. Люди с 1 группой крови (О ) предрасположены к заболеваниям язвенной болезни желудка и 12-перстной кишки и т.д.

Генетический полиморфизм - это состояние, при котором наблюдается длительное разнообразие генов, но при этом частота наиболее редко встречающегося гена в популяции больше одного процента. Поддержание его происходит за счет постоянной мутации генов, а также их постоянной рекомбинации. Согласно исследованиям, которые провели ученые, генетический полиморфизм получил широкое распространение, ведь комбинаций гена может быть несколько миллионов.

Большой запас

От большого запаса полиморфизма зависит лучшая адаптация популяции к новой среде обитания, и в таком случае эволюция происходит намного быстрее. Произвести оценку всего количества полиморфных аллелей, используя традиционные генетические методы, нет практической возможности. Связано это с тем, что наличие определенного гена в генотипе осуществляется за счет скрещивания особей, которые имеют различные фенотипические особенности, определяемые геном. Если знать, какую часть в определенной популяции составляют особи, имеющие различный фенотип, то становится возможным установить количество аллелей, от которых зависит формирование того или иного признака.

Как все начиналось?

Генетика стала бурно развиваться в 60-е годы прошлого столетия, именно тогда стал применяться или ферментов в геле, который позволил определить генетический полиморфизм. Что это за метод? Именно при помощи него вызывается перемещение белков в электрическом поле, которое зависит от размера перемещаемого белка, его конфигурации, а также суммарного заряда в разных участках геля. После этого, в зависимости от расположения и числа пятен, которые появились, проводится идентификация определившегося вещества. Чтобы оценить полиморфизм белка в популяции, стоит исследовать приблизительно 20 или большее количество локусов. Затем с использованием математического метода определяется количество а также соотношение гомо- и гетерозигот. По данным исследований, одни гены могут быть мономорфными, а другие - необычайно полиморфными.

Виды полиморфизма

Понятие полиморфизма чрезвычайно широкое, оно включает в себя переходный и сбалансированный вариант. Зависит это от селективной ценности гена и естественного отбора, который давит на популяцию. Помимо этого, он может быть генным и хромосомным.

Генный и хромосомный полиморфизм

Генный полиморфизм представлен в организме аллелями в количестве более одного, ярким примером этого может стать кровь. Хромосомный представляет собой различия в пределах хромосом, который происходит за счет аберраций. При этом в гетерохроматиновых участках есть различия. В случае отсутствия патологии, которая приведет к нарушению или гибели, такие мутации носят нейтральный характер.

Переходный полиморфизм

Переходный полиморфизм возникает в том случае, когда в популяции происходит замещение аллеля, который когда-то был обычным, другим, который обеспечивает своего носителя большей приспосабливаемостью (это также называется множественным аллелизмом). При данной разновидности есть направленный сдвиг в процентном содержании генотипов, за счет него происходит эволюция, и осуществляется ее динамика. Явление индустриального механизма может стать хорошим примером, который охарактеризует переходный полиморфизм. Что это такое, показывает простая бабочка, которая с развитием промышленности сменила белый цвет своих крыльев на темный. Данное явление начали наблюдать в Англии, где более чем 80 видов бабочек из бледно-кремовых цветов стали темными, что впервые подметили после 1848 года в Манчестере в связи с бурным развитием промышленности. Уже в 1895 году более 95% пядениц приобрели темную окраску крыльев. Связаны такие перемены с тем, что стволы деревьев стали более закопченными, и светлые бабочки стали легкой добычей дроздов и малиновок. Перемены произошли за счет мутантных меланистических аллелей.

Сбалансированный полиморфизм

Определение "полиморфизм сбалансированный" характеризует отсутствие сдвига любых числовых соотношений различных форм генотипов в популяции, которая находится в стабильных условиях среды обитания. Это означает, что из поколения в поколение соотношение остается одним и тем же, но может незначительно колебаться в пределах той или иной величины, которая является постоянной. В сравнении с переходным, сбалансированный полиморфизм - что это? Он в первую очередь является статикой эволюционного процесса. И. И. Шмальгаузен в 1940 году дал ему также название равновесного гетероморфизма.

Пример сбалансированного полиморфизма

Наглядным примером сбалансированного полиморфизма может стать наличие двух полов у многих моногамных животных. Связано это с тем, что у них есть равноценные селективные преимущества. Соотношение их в пределах одной популяции всегда равное. При наличии в популяции полигамии селективное соотношение представителей обоих полов может быть нарушено, в таком случае представители одного пола могут либо полностью уничтожиться, либо устраняются от размножения в большей степени, чем представители противоположного пола.

Другим примером может стать групповая принадлежность крови по системе АВ0. В этом случае частота различных генотипов в различных популяциях может быть различной, но наравне с этим из поколения в поколение она не меняет своего постоянства. Проще говоря, ни один генотип не имеет селективного преимущества перед другим. По данным статистики, мужчины, имеющие первую группу крови, имеют большую ожидаемую продолжительности жизни, чем остальные представители сильного пола с другими группами крови. Наравне с этим, риск развития язвенной болезни 12-перстной кишки при наличии первой группы выше, но она может перфорироваться, и это станет причиной смерти в случае позднего оказания помощи.

Генетическое равновесие

Данное хрупкое состояние может нарушаться в популяции как следствие возникающих они при этом должны быть с определенной частой и в каждом поколении. Исследования показали, что полиморфизмы генов системы гемостаза, расшифровка которых дает понять, эволюционный процесс способствует данным изменениям или, наоборот, противодействует, крайне важны. Если проследить ход мутантного процесса в той или иной популяции, то можно также судить о ее ценности для адаптации. Она может быть равна единице, если в процессе отбора мутация не исключается, и препятствий к ее распространению нет.

Большинство случаев показывают, что ценность таких генов менее единицы, а в случае неспособности таких мутантов к размножению и вовсе все сводится к 0. Мутации такого рода отметаются в процессе естественного отбора, но это не исключает неоднократное изменение одного и того же гена, что компенсирует элиминацию, которая осуществляется отбором. Тогда достигается равновесие, мутировавшие гены могут появляться или, наоборот, исчезать. Это приводит к сбалансированности процесса.

Пример, который может ярко охарактеризовать происходящее, - серповидноклеточная анемия. В данном случае доминантный мутировавший ген в гомозиготном состоянии способствует ранней гибели организма. Гетерозиготные организмы выживают, но они более восприимчивы к заболеванию малярией. Сбалансированный полиморфизм гена серповидноклеточной анемии можно проследить в местах распространения данного тропического заболевания. В такой популяции гомозиготы (особи с одинаковыми генами) элиминируются, наравне с этим действует отбор в пользу гетерозигот (особей с разными генами). За счет происходящего разновекторного отбора в генофонде популяции происходит поддержание в каждом поколении генотипов, которые обеспечивают лучшую приспосабливаемость организма к условиям среды обитания. Наравне с наличием гена серповидноклеточной анемии в есть и другие разновидности генов, характеризующие полиморфизм. Что это дает? Ответом на этот вопрос станет такое явление, как гетерозис.

Гетерозиготные мутации и полиморфизм

Гетерозиготный полиморфизм предусматривает отсутствие фенотипических изменений при наличии рецессивных мутаций, даже если они несут вред. Но наравне с этим они могут накапливаться в популяции до высокого уровня, который может превышать вредные доминантные мутации.

эволюционного процесса

Эволюционный процесс является непрерывным, и обязательным его условием есть полиморфизм. Что это - показывает постоянная приспосабливаемость той или иной популяции к среде своего обитания. Разнополые организмы, которые обитают в пределах одной группы, могут быть в гетерозиготном состоянии и передаваться из поколения в поколение на протяжении многих лет. Наравне с этим фенотипического проявления их может и не быть - за счет огромного запаса генетической изменчивости.

Ген фибриногена

В большинстве случаев исследователями рассматривается полиморфизм гена фибриногена как предшествующее состояние для развития ишемического инсульта. Но в данный момент на первый план выходит проблема, при которой генетические и приобретенные факторы способны оказывать свое влияние на развитие данного заболевания. Данная разновидность инсульта развивается за счет тромбоза артерий головного мозга, а, изучая полиморфизм гена фибриногена, можно понять многие процессы, влияя на которые, недуг можно предупредить. Связи генетических изменений и биохимических показателей крови в данный момент учеными недостаточно изучены. Дальнейшие исследования позволят влиять на ход заболевания, изменять его течение или просто предупреждать его на ранней стадии развития.


Полиморфными принято называть гены, которые представлены в популяции несколькими разновидностями - аллелями, что обусловливает разнообразие признаков внутри вида.

Генетический полиморфизм (genetic polymorphism, греч. genetikos - относящийся к рождению, происхождению; греч. polys - многий и morphe - вид, форма, образ) - разнообразие частот аллелей гомозигот. Различия между аллелями одного и того же гена, как правило, заключаются в незначительных вариациях его «генетического» кода. Большую долю в генетический полиморфизм вносят замены одного нуклеотида на другой и изменения числа повторяющихся фрагментов ДНК, которые осуществляются во всех структурных элементах генома: экзонах, интронах, регуляторных участках и т. д. Масштабы генетического полиморфизма у человека таковы, что между по-следовательностями ДНК двух людей, если только они не однояйцевые близнецы, существуют миллионы различий. Эти различия подразделяют на четыре основные категории:

а) фенотипически не выраженные (напр., полиморфные участки ДНК, используемые для идентификации личности молекулярно-генетическими методами);

б) вызывающие фенотипические различия (напр., в цвете волос или росте), но не предрасположенность к заболеванию;

в) играющие некоторую роль в патогенезе заболевания (напр., при полигенных болезнях);

г) играющие основную роль в развитии заболевания (напр., при моногенных болезнях).

Хотя большинство известных полиморфизмов выражаются либо в заменах одного нуклеотида, либо в изменении числа повторяющихся фрагментов ДНК, тем не менее вариации, затрагивающие кодирующие фрагменты генов и отражающиеся на аминокислотной последовательности их продуктов, встречаются относительно редко и не имеют отношения к анализируемой конкретной проблеме, для которой в первую очередь важны возможные последствия полиморфизма нитронов и 5"-концевых некодирующих последовательностей. Анализ данного феномена в существенной степени зависит от того, насколько вариабельны собственные функции белка, кодируемого различными аллелями, что справедливо и в отношении ферментов образования и метаболизма стероидных гормонов, о которых далее пойдет речь.

Локус называется полиморфным, если в популяции существуют два или более аллеля этого локуса. Однако, если один из аллелей имеет очень высокую частоту , скажем, 0.99 или больше, то высока вероятность того, что ни один другой аллель не будет присутствовать в выборке, взятой из популяции, если только эта выборка не будет очень большой. Таким образом, обычно локус определяется как полимрофный, если частота наиболее распространенного аллеля меньше 0.99. Такое деление носит весьма условный характер и в литературе можно найти другие критерии полиморфности.

Одним из наиболее простых способов измерения степени полиморфности в популяции является подсчет среднего соотношения полиморфных локусов и путем деления их общего числа на суммарное число локусов в выборке. Конечно, такая мера в значительной степени зависит от числа изученных особей. Более точным показателем генетической вариабельности внутри популяции является СРЕДНЯЯ ОЖИДАЕМАЯ ГЕТЕРОЗИГОТНОСТЬ или ГЕННОЕ РАЗНООБРАЗИЕ. Эта величина может быть получена непосредственно из генных частот и в гораздо меньшей степени подвержена влиянию эффектов, связанных с ошибкой выборки. Генное разнообразие по данному локусу определяется следующим образом:

M h = 1 - SUM x i * i=1 где SUM - сумма, x i - частота аллеля i и m - общее число аллелей данного локуса.

Для любого локуса h является вероятностью того, что два аллеля, случайным образом выбранных в популяции, будут отличаться друг от друга. Среднее по всем h для каждого изученного локуса, H, может быть использовано как оценка степени генетической вариабельности внутри популяции.

Степени генетического разнообразия h и H широко использовались для данных, полученных при электрофоретическом анализе и анализе рестрикционными ферментами. Однако, они не всегда могут быть подходящими для данных, полученных при исследовании последовательностей ДНК, так как степень разнообразия на уровне ДНК чрезвычайно велика. В особенности, когда рассматриваются длинные последовательности, вполне вероятно, что каждая будет отличаться от других последовательностей по одному или более нуклеотидам. Тогда как h, так и H будут близки к 1 и, следовательно, не будут различаться между локусами или популяциями, будучи, таким образом, не информативными.

При работе с ДНК более приемлемым показателем полиморфизма в популяции является среднее число нуклеотидных замен на позицию между двумя случайно выбранными последовательностями. Эта оценка называется нуклеотидным разнообразием (Nei M., Li W.-H., 1979) и обозначается п:

П = SUM (x * x * п) i,j i j ij где x i и x j - частоты последовательностей i-го и j-го типов, и п ij - доля нуклеотидных различий между i-м и j-м типами последовательностей.

В настоящее время известно несколько работ по изучению нуклеотидного разнообразия на уровне последовательностей ДНК. Одна такая работа была проделана для локуса, кодирующего алкоголь-дегидрогеназу D. melanogaster (Adh) (Nei M., 1987) .

Исследовались 11 последовательностей длиной 2.379 нуклеотидов. Не принимая во внимание делеции и инсерции, было выделено девять различных аллелей, один из котрых был представлен тремя, а восемь остальных - одной последовательностью. Таким образом, частоты x 1 - x 8 были равны 1/11, а x 9 =3/11. Сорок три позиции были полиморфны. Сначала были подсчитаны доли нуклеотидных различий для каждой пары последовательностей, приведенные в таблице :

Например, аллели 1-S и 2-S различались по трем позициям из 2.379, следовательно, п 12 = 0.13%. Полученное с использованием формулы 3.20 значение п оказалось равным 0.007.

Генетический полиморфизм и наследственные болезни.

В 1902 г. Гаррод предположил, что нарушения метаболизма, например при алкаптонурии , являются крайним выражением химической индивидуальности организма. Действительная широта генетического разнообразия впервые стала очевидной, когда с помощью электрофореза клеточных экстрактов (без предварительной очистки ферментов) было показано существование нескольких структурных изоформ для многих белков. Наличие изоформ обусловлено существованием в популяции множественных вариантов гена ( аллелей) этого белка. Аллели имеют идентичную локализацию в гомологичных хромосомах.

Большинство генов в каждом организме представлено двумя аллелями, один из которых унаследован от отца, а другой - от матери. Если оба аллеля идентичны, то организм считается гомозиготным , если разные - гетерозиготным .

В ходе эволюции разные аллели произошли в результате мутаций от единого аллеля-предшественника, чаще всего они отличаются друг от друга заменой одного нуклеотида ( миссенс-мутации). Обычно белки, кодируемые разными аллелями одного гена, обладают одинаковыми функциональными свойствами, то есть замена аминокислоты нейтральна или почти нейтральна с точки зрения естественного отбора.

О наличии тех или иных аллелей часто судят на основании анализа аминокислотной последовательности соответствующих белков. Для многих генов (например, гена бета-цепи глобина) удается выделить нормальный аллель - самый распространенный в популяции, который встречается значительно чаще других. Иногда среди аллелей нет ни одного, который можно было бы считать нормальным. Чрезвычайно высокий полиморфизм свойственен, например, гену апопротеина (а) и гену альфа-цепи гаптоглобина . Ген считают полиморфным , если его самый распространенный аллель встречается менее чем у 99% людей. Это определение отражает только распространенность разных аллелей, а не их функциональные различия.

Понятие полиморфизма расширилось с открытием необычайной изменчивости последовательностей ДНК. В геномах разных людей различается 1 из 100-200 пар нуклеотидов; это согласуется с гетерозиготностью по 1 из 250-500 пар нуклеотидов. Современные методы позволяют выявить замены отдельных нуклеотидов в кодирующих областях, которые могут быть несмысловыми или вызывать изменение аминокислотной последовательности. Полиморфизм ДНК еще более выражен в некодирующих областях генома, влияние которых на экспрессию генов невелико или его нет вообще.

Помимо замены отдельных нуклеотидов в основе полиморфизма ДНК лежат вставки, делеции и изменение числа тандемных повторов . Различают варьирующие по числу (длинные) тандемные повторы ( минисателлитная ДНК) и короткие (тетра-, три-, ди- или мононуклеотидные) тандемные повторы ( микросателлитная ДНК).

Масштабы полиморфизма ДНК таковы, что между последовательностями ДНК двух людей, если только они не однояйцевые близнецы, существуют миллионы различий. Эти различия подразделяют на четыре большие категории:

Фенотипически не выраженные (например, полиморфные участки ДНК, используемые для идентификации личности молекулярно-генетическими методами);

Вызывающие фенотипические различия (например, в цвете волос или росте), но не предрасположенность к заболеванию;

Играющие некоторую роль в патогенезе заболевания (например, при полигенных болезнях);

Играющие основную роль в развитии заболевания (например, при

Большинство оценок частоты использует обнаружение патологических мутаций с явным влиянием на фенотип. Тем не менее существует масса непатогенных мутаций, считающихся относительно нейтральными; а некоторые могут даже быть полезными. В ходе эволюции устойчивый приток новых изменений нуклеотидов гарантировал высокую степень генетического разнообразия и индивидуальности.

Это распространяется на все области генетики человека и медицинской генетики . Генетическое разнообразие может проявляться в виде изменений в окраске хромосом, изменения числа копий сегментов ДНК, нуклеотидных замен в ДНК, изменений в белках или же как болезнь.

ДНК последовательности каждого участка хромосомы в высшей степени сходны у большинства людей в мире. Фактически произвольно выбранный сегмент ДНК человека размером около 1000 пар оснований содержит, в среднем, только одну пару, отличающуюся на двух гомологичных хромосомах, унаследованных от родителей (если предположить, что родители не родственники).

Эта почти в 2,5 раза больше, чем оценка доли гетерозиготных нуклеотидов для кодирующих белок областей генома (примерно 1 на 2500 пар оснований). Различие неудивительное, поскольку интуитивно понятно, что регионы, кодирующие белок, находятся под более жестким давлением отбора, и таким образом встречаемость мутаций в таких регионах в эволюции должна быть более низкой.

Когда вариант встречается настолько часто , что его обнаруживают более чем в 1% хромосом в общей популяции, его называют генетическим полиморфизмом. Аллели с частотами менее чем 1% принято называть редкими вариантами. Хотя много патологических мутаций, приводящих к генетическим болезням - редкие варианты, нет простой корреляции между частотой аллеля и его влиянием на здоровье. Много редких вариантов не имеют патогенных эффектов, тогда как некоторые варианты, достаточно частые, чтобы считаться полиморфизмами, предрасполагают к тяжелым болезням.

Существует много типов полиморфизма . Некоторые полиморфизмы - следствие вариантов, вызванных делециями, дупликациями, утроениями и так далее, сотен миллионов пар оснований ДНК, и не связаны с каким-либо известным патологическим фенотипом; другие изменения аналогичного размера оказываются редкими вариантами, явно вызывающими тяжелые болезни. Полиморфизмами могут оказаться изменения в одном или нескольких основаниях ДНК, расположенных между генами или в интронах, не связанные с функционированием генов и обнаруживаемые только прямым анализом ДНК.

Изменения последовательности нуклеотидов могут располагаться в кодирующей последовательности самого гена и приводить к образованию различных вариантов белков, в свою очередь вызывающих четко очерченные фенотипы. Изменения в регуляторных областях также могут быть важными в определении фенотипа, влияя на транскрипцию или стабильность мРНК.

Полиморфизм - ключевой элемент в исследовании и практическом использовании генетики человека. Способность различать унаследованные формы генов или других сегментов генома обеспечивают инструментальные средства, необходимые для широкого спектра приложений. Как показано в этой и последующих главах, генетические маркеры - мощное научно-исследовательское инструментальное средство картирования генов на конкретном регионе хромосомы при анализе сцепления или аллельной ассоциации.

Они уже широко используются в медицине - от пренатальной диагностики наследственных болезней до обнаружения гетерозиготного носительства, а также в банках крови и тканей для типиро-вания перед переливаниями и пересадками органов (см. далее в этой главе).

Полиморфизм - основа для развивающихся мероприятий по обеспечению основанной на геномике персонализированной медицины, когда медицинские мероприятия индивидуально подбирают на основе анализа полиморфных вариантов, увеличивающих или уменьшающих риск частых болезней взрослого возраста (например, заболевания коронарных сосудов сердца, опухолей и сахарного диабета), возникновения осложнений после хирургических вмешательств или влияющих на эффективность и безопасность конкретного лекарственного препарата. Наконец, анализ полиморфизма стал мощным новым средством в судебных приложениях, например, определении отцовства, определении останков жертв преступления или для сопоставления ДНК подозреваемого и преступника.




Top