Степени защиты от рентгеновского излучения. Средства радиационной защиты. Способы защиты от рентгеновского излучения

Радиационная защита обеспечивает безопасность персонала и больных от вредного воздействия рентгеновского излучения. Необходимо ознакомиться с основными понятиями, характеризующими электромагнитное излучение.

Доза

Дозой называется часть энергии излучения, которая передается облучаемой ткани в виде ионизации.

Мощность дозы это доза, передаваемая одному грамму ткани за единицу времени.

Интегральная доза - это доза, передаваемая за все время облучения.

В настоящее время на практике применяется несколько понятий, характеризующих дозу излучения.

Поглощенная доза для любого ионизирующего излучения равняется той энергии, которая сообщается одному грамму облучаемого вещества ионизирующими частицами. Единица поглощенной дозы 1 рад (Radiation Absoled Dose), 1 рад = 100 эрг/г = 10 -2 дж/кг.

Мощность поглощенной дозы это поглощенная доза за единицу времени. Единицы мощности поглощенной дозы, применяемые на практике: мрад/час; рад/мин; рад/час, где 1 мрад = 10 -3 рад. Интегральная поглощенная доза - это доза, поглощенная всем объемом облучаемой части объекта за все время облучения.

Единица интегральной поглощенной дозы - 1 г рад.

1 г рад = 100 эрг = 10 -5 дж - суммарная поглощенная энергия.

При поглощении излучения веществом температура вещества повышается, следовательно, по изменению температуры вещества можно судить о поглощенной дозе. Однако изменение температуры настолько малое, что измерение интегральной поглощенной дозы с помощью такого метода возможно только в лабораторных условиях.

Экспозиционная доза это способность рентгеновского излучения ионизировать воздух в данной точке пространства. Единица измерения экспозиционной дозы 1 рентген (р). 1 р - это такая доза рентгеновского или гамма-излучения, которая создает 2,083 х 10 9 пар ионов в 1,293 мг воздуха, что соответствует 1 см³ воздуха при давлении 760 мм рт. ст.

1 р = 2,58 х 10 -4 а х сек/кг

1 р создает 1,61 х 10 12 пар ионов в 1 г воздуха.

Экспозиционной дозе 1 р в мягких тканях тела соответствует поглощенная доза 0,97 рад. Поглощенная доза обычно пропорциональна экспозиционной дозе. Коэффициент пропорциональности практически не зависит от характера излучения. Мощность дозы - это доза за единицу измерения.

Единицы мощности экспозиционной дозы , применяемые на практике: мр/ч; р/мин; р/ч; р/неделя; р/год. Мощность экспозиционной дозы при облучении объекта, находящегося на расстоянии 0,5 м от фокуса рентгеновской трубки с анодным напряжением и током 40 кв и 20 ма, за время 4 - 5 сек будет приблизительно 1 р/мин. Мощность экспозиционной дозы измеряется ионизационной камерой. Стенки ионизационной камеры покрываются веществами, атомное число которых близко к атомному числу применяемого газа. С точки зрения поглощения и рассеяния излучения эти вещества ведут себя так же, как применяемый газ.

Допустимая поглощенная доза для человека . В настоящее время считается, что максимально допустимая доза для человека, не вызывающая патологических изменений организма, приблизительно 0,1 р за неделю. С точки зрения максимально допустимой дозы стандартами считаются рекомендации Международного Комитета Радиологической Защиты (ICRP)

Максимально допустимая доза - это такая поглощенная доза, которая приводит к патологическим изменениям в организме или повреждению генетического аппарата клетки только в редчайших случаях (вероятность близка к 0).

Защита от прямого и рассеянного рентгеновского излучения должна быть такой эффективной, чтобы поглощенная доза в любой точке защищаемого рабочего места в течение тридцатишестичасовой рабочей недели не превышала 0,1 р.

Основные принципы защиты, защитные материалы

Согласно гипотезе Эйнштейна, энергия любого электромагнитного колебания, в том числе и рентгеновского излучения, концентрируется в фотонах. При столкновении фотона с атомом его энергия частично (эффект Комптона) или полностью (фотоэлектронная абсорбция) передается атому, который ионизируется.

Возникающие в облучаемых тканях тела ионы оказывают вредное действие. Мы подчеркиваем только наиболее важные положения, касающиеся этого.

1. К биологическим изменениям в организме приводит только поглощенная им доза излучения. Жесткое рентгеновское излучение с короткой длиной волны поглощается телом в меньшей степени, чем «длинноволновое» мягкое излучение.

2. Влияние рентгеновского излучения на организм зависит от величины поглощенной дозы.

3. Последствия поглощенного организмом рентгеновского излучения выявляются только по истечении латентного периода. Длительность латентного периода иногда достигает нескольких лет. Вредное действие излучения может сказаться иногда только на последующих поколениях.

При прохождении рентгеновских лучей через любое вещество, в том числе и человеческое тело, их интенсивность меняется по экспоненциальному закону:

I1 = I0e -md , где:
I0 - интенсивность падающего излучения,
I1 - интенсивность излучения после прохождения через вещество,
m коэффициент ослабления,
d - длина пути рентгеновских лучей в веществе.

Коэффициент ослабления и состоит из двух компонентов:

m = m1 + o, где:
m1 - коэффициент поглощения,
о - коэффициент рассеивания.

У элементов с большим атомным весом (порядковый номер которых больше 20-ти) коэффициентом рассеивания можно пренебречь.

Коэффициент поглощения m1 зависит от плотности и порядкового номера вещества, а также от длины волны рентгеновского излучения:

m1 = cgz³λ³, где:
c - универсальная физическая постоянная,
g - плотность материала,
z - порядковый номер элемента в таблице Менделеева,
λ - длина волны.

Итак: если на какое-либо вещество падают рентгеновские лучи интенсивностью I0 и, проходя через него, имеют интенсивность I1, то I0 - I1 поглощается и рассеивается молекулами вещества. Длина волны рассеянного излучения больше, чем длина волны падающих лучей. Отношение количества поглощенного и рассеянного излучения зависит от характера вещества и длины волны.

Чем больше порядковый номер элемента, тем интенсивнее элемент поглощает и меньше рассеивает излучение. Поэтому для защиты от рентгеновских лучей применяются элементы с большим порядковым номером, из них наиболее часто - свинец. Поглощение зависит также от плотности и толщины материала. Это учитывается при расчете защиты. Поглощение других веществ, применяемых для защиты, задается по свинцовому эквиваленту. Под свинцовым эквивалентом понимают толщину материала, которая поглощает рентгеновское излучение так же, как свинцовая пластина толщиной 1 мл. Свинцовый эквивалент материалов, наиболее часто применяемых при защите от рентгеновского излучения, дается в таблице 2.

Защита от рентгеновского излучения, защитные средства

На основе вышесказанного практические возможности защиты сводятся к следующему:

1. Уменьшение времени пребывания в сфере источника рентгеновского излучения.

2. Оптимальный выбор характеристик рентгеновского излучения, применяемого для исследования и лечения (силы тока и напряжения генерирования, величины поля облучения).

3. Отфильтрование мягкого, не используемого излучения с помощью алюминиевого фильтра, расположенного непосредственно на стеклянной оболочке рентгеновской трубки.

4. Увеличение расстояния между источником излучения и объектом.

5. Применение защитных ширм из поглощающих материалов.

Меры радиационной защиты, описанные в пунктах 1 - 3, не требуют объяснения.

Расстояние от источника рентгеновских лучей . При диагностических исследованиях минимальное расстояние между фокусом рентгеновской трубки и исследуемым составляет 35 см (кожно-фокусное расстояние). Это расстояние обеспечивается автоматически конструкцией просвечивающего и съемочного устройства (рис. 5.1).


Рис. 5.1. Кожно-фокусное расстояние (кф)
1. фокус; 2. кожух рентгеновской трубки; 3. окно; 4. диафрагма; 5. опорная стенка; 6. исследуемый объект; 7. просвечивающий экран; 8. свинцовое стекло; 9. место врача, проводящего исследование

В рентгенотерапевтических аппаратах расстояние между фокусом рентгеновской трубки и облучаемой частью тела зависит от высоты тубуса и меняется в пределах 30 - 50 см. Во время работы рентгеновского аппарата обслуживающий персонал должен находиться на расстоянии не менее 1,5 м от источника излучения. При этом обязательно применение защитной ширмы. В настоящее время строятся такие рентгеновские кабинеты, в которых рентгеновский аппарат управляется из отдельного помещения.

При диагностических процедурах защита больного обеспечивается следующими мероприятиями. При обзорных снимках осуществляется защита гонад. При томографии и снимках лучами Букки используется фартук из свинцовой резины. При снимках таза и каудального отдела позвоночника применяется дополнительная гонадная защита (см. гл. 10). Защитить больного от рассеянного излучения, возникающего в его теле при съемке, невозможно. Поскольку врач находится перед просвечивающим экраном во время всего рабочего дня, он получает наибольшую дозу. Необходимо, чтобы рабочие места - у штатива при просвечивании и за защитной ширмой при рентгенографии были хорошо защищены. Для защиты от прямого излучения служит свинцовое стекло, покрывающее просвечивающий экран, свинцовый эквивалент которого равен 2 мм, а также дистинктор-тубусы, средства для дистанционной пальпации. От рассеянного излучения врача защищает фартук из свинцовой резины, подвешенный на нижней части просвечивающего экрана (свинцовый эквивалент 1,2 мм). С двух сторон просвечивающего экрана расположены два листа из свинцовой резины, служащие для защиты рук врача. У просвечивающих экранов, снабженных устройством для прицельных снимков, защиту рук обеспечивает само устройство. Для защиты служит также подвижная малая защитная ширма-стул шириной 1 м.

Во время просвечивания на трахоскопе врач должен стоять. В этом случае для защиты от рассеянного рентгеновского излучения применяется передвижная защитная ширма высотой до уровня груди врача и шириной приблизительно 70 см, покрытая свинцовой резиной. Во время исследования врач использует личные средства защиты: перчатки и фартук из свинцовой резины (свинцовый эквивалент 0,2 - 0,5 мм).

При работе аппарата рентгенолаборант находится за защитной ширмой или в отдельном помещении, откуда он управляет рентгеновским аппаратом. В последнем случае рентгенолаборант работает при нормальном освещении в абсолютно защищенном месте.

В рентгенотерапии для защиты больного применяют фильтры и тубусы. С помощью фильтров регулируется глубина облучения, а с помощью тубусов - кожно-фокусное расстояние и величина облучаемого поля. Стенки тубуса защищают от рассеянного рентгеновского излучения. При облучении без тубуса необлучаемые части тела больного защищают листами свинцовой резины и другими лучепоглощающими веществами (таблица 3 и 4). Во время облучения врач и рентгенолаборант не должны находиться в помещении, где производится облучение. Рентгеновская установка работает только при закрытых дверях. При открывании двери аппарат автоматически выключается. Защита пульта управления рентгеновским аппаратом обеспечивается разделяющей стенкой, в которой имеется окно из свинцового стекла для наблюдения за больным.

У промышленных рентгеновских установок защита обслуживающего персонала обеспечивается так же, как при рентгенотерапии: путем дистанционного управления аппаратом из отдельного помещения.

Защита соседних помещений . Стены помещения, в котором установлена рентгеновская аппаратура, должны обеспечивать надежную защиту соседних помещений от рентгеновских лучей. Для защиты от прямого излучения на стены, потолок и пол наносится лучепоглощающий слой. Защита соседних помещений от рассеянного излучения необходима только при использовании рентгеновских аппаратов, работающих при анодном напряжении свыше 50 кв. Стены в кабинетах, где установлены рентгеновские аппараты, работающие при напряжении на аноде до 10 кв, покрываются лучепоглощающим слоем до высоты 2 л, а при напряжении свыше 100 кв - до потолка.

В рентгенодиагностических кабинетах кирпичные стены толщиной 12 см обеспечивают полную защиту соседних помещений, если источник излучения находится на расстоянии не менее 1,5 м от стен. Проекты новых рентгеновских кабинетов утверждаются государственными органами.

Принципы измерения дозы

Экспозиционную дозу можно измерять разными способами, с помощью дозиметров. Чувствительными элементами дозиметров могут быть фото-эмульсия, ионизационные камеры, счетчики, сцинтилляторы и полупроводники.

Принцип измерения с помощью фоточувствительной эмульсии . Под действием рентгеновских лучей фотографическая пленка чернеет. Степень почернения пленки зависит от полученной дозы. Графическая зависимость степени почернения пленки от величины дозы показана на рис. 5.2. Степень почернения пленки измеряется с помощью денситометра.


Рис. 5.2. Зависимость почернения эмульсии рентгеновской пленки от дозы

Пучок рентгеновского излучения содержит лучи с различной длиной волны, обладающие разной энергией. Почернение пленки зависит от энергии излучения. Поэтому при измерении дозы рентгеновского излучения необходимо пользоваться фильтрами, что позволяет помимо дозы определить и жесткость.

Принцип измерения дозы с помощью ионизационной камеры . Важной характеристикой рентгеновского излучения является его ионизирующая способность, которая может быть зарегистрирована с помощью ионизационных камер. Под действием рентгеновских лучей молекулы и атомы газов ионизируются. При этом возникают положительные и отрицательные ионы, которые под действием электрического поля перемещаются к отрицательному и положительному полюсам и тем самым создают ионизационный ток. Величина этого тока зависит от числа пар ионов, возникающих за единицу времени, от напряженности электрического поля, свойств ионизируемого газа и геометрических размеров камеры. Электрическое поле в камере создается с помощью заряженного плоского конденсатора, между обкладками которого располагается ионизационная камера. При увеличении напряжения на обкладках конденсатора до некоторого предела увеличивается ионизационный ток. При дальнейшем увеличении напряжения ионизационный ток уже не растет, а остается постоянным. Это значение ионизационного тока называется током насыщения. При измерении дозы на обкладки конденсатора подается напряжение насыщения. Таким образом, ионизационный ток зависит только от числа пар ионов, характеризующего интенсивность излучения.

Принцип измерения излучения с помощью газоразрядного счетчика . Счетчик представляет собой наполненную газом цилиндрическую стеклянную трубку. Катодом счетчика является металлический слой, нанесенный на внутреннюю поверхность. Анод представляет собой тонкую нить, натянутую вдоль оси цилиндра. К электродам счетчика подключается напряжение. Напротив анодного вывода имеется окно, через которое рентгеновские лучи проникают в трубку, по внешнему контуру течет ток. При попадании кванта излучения в трубку возникает импульс тока во внешней цепи. Эти импульсы подсчитываются специальным устройством.

Измерительные приборы

Фотодозиметр . Он служит для измерения интегральной дозы. Дозиметр представляет собой бакелитовый футляр, в качестве детектора используется рентгеновская пленка, покрытая различными фильтрами. Носят дозиметр в наружном верхнем кармане рабочего халата. Пленка вынимается из футляра раз в неделю или в месяц и проявляется. По степени почернения оценивается интегральная доза. Измерение дозы с помощью фотодозиметра дает на практике точность в пределах от 0,05 до 1,00 р.

При помощи менее чувствительных рентгеновских пленок можно измерять дозу вплоть до 20000 р. Преимуществами фотодозиметра являются малая стоимость, простота в обращении и при оценке результатов, малая чувствительность к механическим воздействиям и возможность сохранения пленок в качестве документов. Фотодозиметры нашли широкое применение для постоянной индивидуальной дозиметрии работающих в сфере излучения.


Рис. 5.3. Принципиальная схема конденсаторных ионизационных камер
1, 2. внутренний электрод; 3. янтарь; 4. полистирол

Ионизационные камеры конденсаторного типа (рис. 5.3) предназначены для измерения интегральной дозы. Они представляют собой шаровой или цилиндрический конденсатор с янтарной или полистирольной изоляцией, емкостью 5 - 10 см. Диэлектриком в этих конденсаторах служит воздух. Пределы измерения ионизационных камер составляют 100 - 200 мр. При тщательной изоляции камеры ток утечки настолько незначительный, что при зарядке конденсатора на напряжение 100 - 150 в потеря заряда за день не превышает 2%. Поскольку изменение заряда конденсатора под действием излучения пропорционально поглощенной дозе, то по остаточному напряжению конденсатора можно судить об интегральной дозе. Измерение интегральной дозы в этом случае сводится к измерению напряжения. В зависимости от способа измерения напряжения существуют два типа камер. В более простых камерах зарядка конденсатора и отсчет остаточного напряжения производятся с помощью отдельного устройства. Более сложные дозиметры состоят из ионизационной камеры, электрометра и микроскопа для отсчета (рис. 5.4).


Рис. 5.4, Принципиальная схема индивидуального дозиметра
1. рамка; 2. кварцевая нить; 3. шкала

Если вследствие ионизации заряд кварцевой нити (2) и рамки (1) уменьшается, то это влечет за собой перемещение кварцевой нити вдоль шкалы (3).

Такая конструкция отличается большой прочностью. Прибор хорошо выдерживает механические воздействия и мало чувствителен к изменениям окружающей среды.

Ионизационная камера «Mekapion» служит для измерения интегральной дозы. Чувствительным элементом (датчиком) ее является наперстковая ионизационная камера. Один электрод ионизационной камеры заряжен положительно, а другой, присоединенный к управляющей сети триода,- отрицательно. Под влиянием рентгеновского излучения заряд ионизационной камеры уменьшается, следовательно, уменьшается и напряжение, запирающее триод. Вследствие этого в лампе потечет анодный ток; реле, включенное в анодную цепь триода, сработает, сигнальная лампочка загорится, а счетчик одновременно зарегистрирует импульс. Одна вспышка сигнальной лампочки или же одно деление на счетчике соответствует дозе 2,5 р. Электрическая схема прибора показана на рис. 5.5. Прибор применяется при рентгенотерапии. Недостатком его является большая чувствительность к изменениям напряжения сети.

Универсальный дозиметр фирмы Сименс служит для измерения интегральной дозы и мощности экспозиционной дозы. Интегральную дозу измеряют в пределах от 200 до 1000 р, а мощность экспозиционной дозы 20 - 200 р/мин. Принципиальная схема прибора приведена на рис. 5.6 и 5.7. При измерении интегральной дозы (рис. 5.6) наружная обкладка конденсаторной ионизационной камеры заряжена положительно, а внутренняя обкладка (нить) соединена с конденсатором большой, емкости (С) и электрометром (емкостным вольтметром). Под действием рентгеновского излучения по ионизационной камере потечет ток, заряжающий конденсатор. Угол поворота подвижной части электрометра пропорционален заряду конденсатора. При измерении мощности экспозиционной дозы (рис. 5.7) внутренняя обкладка конденсаторной ионизационной камеры заземляется через большое сопротивление R. Ионизационный ток, протекающий по камере под действием рентгеновского излучения, создает падение напряжения на сопротивлении, в любой момент времени пропорциональное мощности экспозиционной дозы. Прибор применяется при наладке терапевтических рентгеновских аппаратов. Градуировка прибора производится с помощью радиоактивных препаратов с большим периодом полураспада.

Дозиметр типа FH 40H служит для измерения мощности экспозиционной дозы в пределах 0 - 1 р/час и 2 - 25 мр/час. Чувствительным элементом прибора является счетчик Гейгера - Мюллера. Принцип работы дозиметра: ток сетки электронной лампы, управляемой счетчиком, измеряется с помощью микроамперметра. При открытом счетчике течет максимальный сеточный ток, значит, полное отклонение микроамперметра соответствует исходному положению. Под действием излучения в лампе потечет анодной ток, следовательно, ток сетки уменьшится, что пропорционально импульсам излучения, полученным счетчиком за единицу времени. Преимущество данного прибора заключается в том, что он питается от батареи.

Дозиметр типа FH 40Т является транзисторным вариантом описанного выше прибора.

Защита от ионизирующего излучения реактора базируется на его экранировании и ослаблении защитными материалами (создание биологической защиты). Выбор материалов для биологической защиты зависит от вида излучения. Так, а-частицы полностью поглощаются одеждой, резиновыми перчатками. Для защиты от Р-частиц операции с радиоактивными веществами необходимо проводить за специальными экранами (ширмами) или в защитных шкафах. Рентгеновское и у-излучение наиболее полно поглощается веществами с высокой плотностью (свинец, сталь, а также бетон). Для защиты от нейтронов используют вещества с малым атомным номером, например воду, полиэтилен.[ ...]

Для сооружения стационарных средств защиты стен, перекрытий, потолков и т. д. используют кирпич, бетон, баритобетон и баритовую штукатуру (в их состав входит сульфат бария - Ва804). Эти материалы надежно защищают персонал, от воздействия гамма- и рентгеновского излучения.[ ...]

При перечислении антропогенных источников излучений следует указать только те, которые представляют опасность для всего населения. Здесь следует особенно отметить медицину, использующую рентгеновские радионуклидные излучения в диагностических и терапевтических целях. В восьмидесятые годы многие старые рентгеновские установки были заменены современной аппаратурой, использующей меньшие дозы облучения, что позволило сократить лучевую нагрузку на пациентов. Защитой от действия излучений служит и надежное экранирование тех участков тела, которые не подвергаются облучению в медицинских целях. Эффективность этих мероприятий зависит как от качества работы медицинского персонала, так и от частоты контактов больного с источниками излучения. Все же, несмотря на достигнутые успехи в области рентгенологии и радиологий, медицина остается основным источником искусственного воздействия излучения на организм.[ ...]

Для создания передвижных экранов используют различные материалы. Защита от альфа-излучения достигается применением экранов из обычного или органического стекла толщиной несколько миллиметров. Достаточной защитой от этого вида излучения является слой воздуха в несколько сантиметров. Для защиты от бета-излучения экраны изготавливают из алюминия или пластмассы (органическое стекло). От гамма- и рентгеновского излучения эффективно защищают свинец, сталь, вольфрамовые сплавы. Смотровые системы изготавливают из специальных прозрачных материалов, например, свинцового стекла. От нейтронного излучения защищают материалы, содержащие в составе водород (вода, парафин), а также бериллий, графит, соединения бора и т.д. Бетон также можно использовать для защиты от нейтронов.[ ...]

Свинец, его окись и соли применяют для изготовления аккумуляторов, для защиты от рентгеновского излучения и у-лучей, для изготовления типографских сплавов, бронзы, в резиновой промышленности и др.[ ...]

Однако продолжительное или слишком интенсивное воздействие на организм рентгеновских лучей, особенно жестких, вызывает тяжелые заболевания, аналогичные возникающим при у-облучении. По этой причине меры защиты от рентгеновского излучения аналогичны используемым против у-излучения.[ ...]

К первой категории относятся работы, где радиоактивные вещества применяются в закрытом виде - герметичные источники. Здесь возможно только внешнее облучение, поэтому необходима защита от рентгеновского и гамма-излучения.

Стационарные средства радиационной защиты процедурной и других помещений рентгеновского кабинета (стены, пол, потолок, защитные двери, смотровые окна, ставни и др.) должны обеспечивать ослабление рентгеновского излучения до уровня, при котором не будет превышен основной предел дозы (ПД) для персонала и населения (табл. 9.1, т.1, ).

Значения допустимой мощности эффективной дозы ДМЭД (мкЗв/ч) рассчитываются, исходя из основных пределов годовой дозы для соответствующих категорий облучаемых лиц (табл. 9.1, т.1) и возможной продолжительности их пребывания в помещениях и на территориях различного назначения по формуле:

где ПД - основной предел годовой дозы для соответствующей кате-

гории лиц (табл. 9.1, т.1), мЗв; с - продолжительность работы на рентгеновском аппарате в течение года при односменной работе персонала

группы A, c 1500 ч (30-часовая рабочая неделя); п - коэффициент сменности, учитывающий возможность двухсменной работы на рентгеновском аппарате и связанную с этим увеличенную продолжительность облучения персонала группы Б и населения, отн. ед.; Т. коэффициент занятости помещения или территории для соответствующих категорий облучаемых лиц, учитывающий максимально возможную продолжительность их облучения, отн. ед.; 10 - множитель для перевода мЗв в мкЗв.

В табл. 10.1 приведены значения ДМЭД для различных помещений и территорий, в зависимости от значений коэффициентов занятости Т, сменности п и продолжительности работы с учетом сменности t c -n.

Приведенные в табл. 10.1 ДМЭД используются для целей радиационного контроля.

Расчет стационарной защиты при проектировании основан на определении требуемой кратности ослабления К мощности поглощенной дозы в воздухе рентгеновского излучения в данной точке в

отсутствие защиты до такого значения проектной мощности дозы 1 за защитой, которая обеспечивает не превышение ДМЭД. Кратность ослабления К защиты вычисляется по формуле:

где: к - коэффициент перехода от поглощенной дозы в воздухе к эффективной дозе, Зв/Гр; с учетом коэффициента запаса на проектирование, равного 2, консервативно принят 1 Зв/Гр; R - радиационный выход рентгеновского аппарата, мГр-м /(мА-мин); W - рабочая нагрузка рентгеновского аппарата, (мА-мин)/нед; N - коэффициент направленности излучения, отн. ед.; 30 - значение нормированного времени работы рентгеновского аппарата в неделю при односменной работе персонала группы А (30 - часовая рабочая неделя), ч/нед; г - расстояние от фокуса рентгеновской трубки до точки расчета, м; 10 - множитель для перевода мГр в мкГр.

Таблица 10.1

Допустимая мощность эффективной дозы (ДМЭД) в помещениях рентгеновского кабинета, в других помещениях и на прилегающей территории в зависимости от значений параметров Т, n, t c -n

Помещение, территория

Помещения постоянного пребывания персонала группы А (процедурная, комната управления, комната приготовления бария, фотолаборатория, кабинет врача- рентгенолога, предоперационная и ДР-)

Помещения, смежные по вертикали и горизонтали с процедурной рентгеновского кабинета, имеющие постоянные рабочие места персонала группы Б

Помещения, смежные по вертикали и горизонтали с процедурной рентгеновского кабинета без постоянных рабочих мест (холл, гардероб, лестничная площадка, коридор, комната отдыха, уборная, кладовая и др.)

Помещения эпизодического пребывания персонала группы Б (технический этаж, подвал, чердак и др.)

Палаты стационара, смежные по вертикали и горизонтали с процедурной рентгеновского кабинета

Территория, прилегающая к наружным стенам процедурной рентгеновского кабинета

Значение радиационного выхода R берется из технической документации на рентгеновский аппарат или протокола контроля эксплуатационных параметров в зависимости от напряжения на рентгеновской трубке. При их отсутствии используются средние значения R, приведенные в табл. 6 приложения 3 Правил .

Значения номинальной рабочей нагрузки W и анодного напряжения V , используемых для расчета стационарной защиты рентгеновских кабинетов, в зависимости от типа и назначения рентгеновского аппарата приведены в табл. 10.2. Значения W рассчитаны с учетом регламентированной длительности проведения соответствующих рентгенологических процедур.

Коэффициент направленности N учитывает направление пучка рентгеновского излучения. Суммарно по всем направлениям падения первичного пучка рентгеновского излучения (с учетом всех возможных вариантов позиционирования пациента) значение N принимается равным 1. Для рассеянного излучения значение N принимается 0,05. Для аппаратов с подвижным источником излучения (сканирующие аппараты: рентгеновский компьютерный томограф, стоматологический аппарат для панорамных снимков и др.) значение N принимается равным 0,1.

Таблица 10.2

и анодное напряжение U для расчета __стационарной защиты рентгеновских кабинетов_

Рентгеновская аппаратура*

напряжение,

Флюорографический аппарат с люминесцентным экраном и оптическим переносом изображения, пленочный или цифровой

Флюорографический аппарат со сканирующей линейкой

Флюорографический малодозо- вый аппарат с УРИ, ПЗС- матрицей и цифровой обработкой изображения

Рентгенодиагностический аппарат общего назначения, пленочный или цифровой

Рентгеновские аппараты для интервенционных процедур (ангиографические, хирургические)

Рентгеновский компьютерный томограф

Хирургический передвижной аппарат с УРИ

Палатный рентгеновский аппарат

Рентгеноурологический аппарат

Рентгеновский аппарат для литот- рипсии

Рентгеновская аппаратура*

напряжение,

Маммографический аппарат пленочный или цифровой

Маммографический аппарат с цифровым приемником изображения, сканирующий

Рентгеновский аппарат для планирования лучевой терапии (симулятор)

Аппарат для близкодистанционной рентгенотерапии

Аппарат для дальнедистанционной рентгенотерапии

Остеоденситометр для всего тела

Номинальное

Стоматологический аппарат для прицельных снимков пленочный

Стоматологический аппарат для прицельных снимков высокочувствительный пленочный или цифровой

Стоматологический аппарат для панорамных снимков пленочный или цифровой

Стоматологический рентгеновский компьютерный томограф

Микрофокусный рентгеновский аппарат с максимальным анодным током не более 0,1 мА

Примечания: *Для аппаратов, не вошедших в табл. 11.2, а также при нестандартном применении перечисленных типов аппаратов W рассчитывается по значению фактической экспозиции при стандартизированных значениях анодного напряжения. Для рентгеновских аппаратов, в которых максимальное анодное напряжение ниже указанного в табл. 11.2, при расчетах и измерениях необходимо использовать максимальное напряжение, указанное в технической документации на аппарат.

Расстояние от фокуса рентгеновской трубки до точки расчета определяется по проектной документации на рентгеновский кабинет. За точки расчета защиты принимаются точки, расположенные на высоте 1 м в защищаемом помещении: над и под процедурной - в точках прямоугольной сетки с шагом 1-2 м; смежно по горизонтали - на расстоянии 10 см от стены по всей длине стены с шагом 1-2 м.

На территории учреждения за точки расчета принимают точки, расположенные на расстоянии 10 см от наружной стены помещения процедурной на высоте 1 м, а при наличии окон - до 2 м от основания здания.

При расчете радиационной защиты рентгеновского стоматологического кабинета, расположенного смежно с жилыми помещениями, за точки расчета защиты принимаются точки, расположенные: вплотную к внутренним поверхностям стен кабинета, размещенного смежно по горизонтали с жилыми помещениями; на уровне пола кабинета при расположении жилого помещения под кабинетом; на уровне потолка кабинета при расположении жилого помещения над кабинетом.

На основании рассчитанных значений кратности ослабления

^ определяют необходимые значения свинцовых эквивалентов элементов стационарной защиты. В табл.1 приложения 3 представлены значения свинцовых эквивалентов в зависимости от значения кратности ослабления в диапазоне напряжений на рентгеновской трубке от 50 до 250 кВ.

Средства защиты, поставляемые в виде готовых изделий (защитные двери, защитные смотровые окна, ширмы, ставни, жалюзи и др.), должны обеспечивать кратность ослабления излучения, предусмотренную расчетом защиты, содержащимся в технологической части проекта рентгеновского кабинета.

Для изготовления стационарной защиты могут быть использованы материалы, обладающие необходимыми конструкционными и защитными характеристиками, отвечающие санитарно-гигиеническим требованиям. Защитные характеристики (свинцовые эквиваленты) основных строительных и специальных защитных материалов приведены в табл. 2-5 приложения 3 . При применении материалов, не перечисленных в табл. 2-5 приложения 3 , необходимо иметь документы, подтверждающие их защитные свойства или должны быть определены защитные характеристики в аккредитованных организациях с использованием контрольных образцов.

Расчет защиты для двух или более рентгеновских аппаратов, установленных в одной процедурной, должен проводиться по суммарной рабочей нагрузке от всех аппаратов. Необходимая толщина защитных ограждений выбирается, исходя из максимальных рассчитанных значений кратности ослабления. Эти же требования предъявляются при расчете защиты комнаты управления, смежной с двумя процедурными помещениями.

В процедурной рентгеновского кабинета, где пол расположен непосредственно над грунтом или потолок находится непосредственно под крышей (если она не используется), защита от излучения в этих направлениях не предусматривается.

Коммуникации через стены и перекрытия помещений рентгеновских кабинетов (воздуховод, водопровод, электрический кабель) должны быть оснащены защитой, обеспечивающей безопасность персонала. Коммуникации рекомендуется размещать вне зоны прямого пучка излучения.

Санитарно-гигиенические требования и мероприятия по защите от источников ионизирующих излучения на производстве, определяются:

Активностью источников;

Их агрегатному состоянию;

Видом и энергией излучения;

Количеством вещества;

Характером технологического процесса. Для безопасности работ с источниками радиоактивных излучений

необходимую защиту как от внешнего, так и от внутреннего облучения.

Задача при обеспечении радиационной безопасности состоит в том, чтобы не допустить излучения выше предельно. Оно обеспечивается путем применения комплекса организационных и технологических мероприятий, в том числе "защиты временем" и "защиты расстоянием".

Доза гамма излучения:

где: Д - доза у-излучения, Р; и y - ионизационная стала данного изотопа, А - активность, мКи; t - время облучения, ч.; l - расстояние от источника, м.

Из формулы видно, что доза облучения тем меньше, чем меньше время излучения - "защита временем" и чем больше расстояние от источника излучения - "защита расстоянием».

"Защита время" во время работы достигается соответствующей подготовкой и организацией работ, составлением и соблюдением графиков, согласно которым при контакте с источниками излучения минимальный, а производительность труда остается достаточно высокой.

"Защита расстоянием" при работе с радиоактивными веществами незначительной активности предусматривает использование ручных манипуляционных захватов и дистанционных универсальных манипуляторов. Ручные манипуляционные захваты передают движения и усилия рук оператора на некоторое расстояние с соответствующим увеличением этих движений и усилий. Удаленные универсальные манипуляторы позволяют выполнять различные операции по захвату и перемещению предметов, ориентации их под любым углом и др. Они обладают несколькими степенями свободы, ими можно управлять с большого расстояния с помощью рукояток, при этом оператор пальцами испытывает нагрузку и силу от захватов манипулятора. Наблюдение за работой осуществляется с помощью телевизионных систем, системы зеркал и перископов.

При работе с радиоактивными веществами большой активности применяют автоматизированное оборудование, системы дистанционного управления.

Экранирование является наиболее эффективной защитой от радиоактивного облучения, так как позволяет снижать дозу облучения на рабочем месте до предельно уровня. Проектируя защитные экраны, следует определить толщину и материал экрана с учетом вида и энергии излучения.

Защитные экраны от а-излучения, как правило, не применяются, так как оно имеет малую проникающую способность. Слой воздуха в несколько сантиметров или более плотного материала в несколько миллиметров (стекло, картон, фольга, одежда, резиновые перчатки и др.) Обеспечивают достаточно полное поглощение а-излучения.

Поглощение потока β-излучения может быть определено, если толщина защитного экрана может быть примерно определена по формуле:

В защитных экранах для поглощения потока β-излучения применяют алюминий, стекло, плексиглас, свинец с облицовкой материалами с малым атомным номером. Свинец применяется при экранировании β излучений высоких энергий, так как это излучение при прохождении через вещество вызывает вторичное излучение (рентгеновское, в-излучения и нейтронов).

Экраны для защиты от у-излучения выполняют из материалов с большим атомным номером и большой плотностью (свинец, вольфрам). Для стационарных сооружений применяют бетон, баритобетон, чугун, сталь, одновременно являются элементами строительных конструкций.

Если известен уровень излучения на рабочем месте без защиты, то толщину защитных экранов от у-излучений можно определить по формуле:

Защита от нейтронов осложняется тем, что они очень плохо поглощаются веществом. В связи с этим защита от нейтронов заключается в замедлении быстрых нейтронов и последующем поглощении уже замедленных. Защитными материалами от быстрых нейтронов является вода, парафин, графит, бериллий и ин.ш.

Тепловые нейтроны хорошо поглощаются бором, кадмием.

Применяют защитные экраны различных конструкций: стационарные, передвижные, разборные, настольные.

При работе с малыми уровнями излучения используют вытяжные шкафы и боксы, отличающиеся достаточной герметичностью, оборудованные манипуляторами и приточно-вытяжной вентиляцией (7.1).

При транспортировке и хранении радиоактивных веществ используют контейнеры и сейфы, выполненные из стали, свинца, чугуна.

Для устранения попадания внутрь организма светящихся соединений (в настоящее время они применяются в исключительных случаях по шкалам приборов и ручках управления), вызывающие внутреннее облучение, необходимо соблюдать правила личной гигиены (мыть руки теплой водой с мылом перед едой, курением и др.) И исключать возможность их распыления и попадания в воздух производственных помещений.

Работы с радиоактивными изотопами, а также техническое обслуживание приборов и установок, в которых используются изотопы, должны проводиться в специально отведенных помещениях с санитарно-техническим оборудованием и системой вентиляции.

Техническое обслуживание и работа на установках с радиоактивными изотопами должна выполняться работниками не моложе 18 лет, прошедшие медицинский осмотр и специальное обучение безопасным методам работы на данной установке. Эти работники должны находиться под постоянным контролем, для них регламентируется продолжительность рабочего дня, выдается спецодежда, приборы индивидуального дозиметрического контроля

При работе с радиоактивными веществами безопасность зависит в значительной степени от своевременного выявления и измерения уровня излучения.

Измерение осуществляется специальными приборами - радиометрами, использующих различные методы - ионизационный сцинтилляционный, фотографический и химический. Для измерения альфа-, бета-, гамма и рентгеновского излучений и тепловых нейтронов применяются универсальные радиометры типов РКС2-01 и УИМ2-1 и другие.

В процессе работы с радиоактивными веществами большое значение имеет применение средств индивидуальной защиты. Они должны предохранять кожу от загрязнений радиоактивными веществами и предотвращать их попадание внутрь организма.

К средствам индивидуальной защиты относятся: спецодежду, перчатки, респираторы, пневмокостюмы, бахилы. Для непосредственной работы с радиоактивными веществами применяют средства индивидуальной защиты, изготовлены из прочного, хорошо дезактивированного поливинилхлоридного пластика.

Органы дыхания защищают респираторами "Снежок-К", "чтб-1" и "Лепесток". В процессе работы в ремонтной зоне, при осмотре и вскрытии боксов и другого технологического оборудования, загрязненного радиоактивными веществами, применяют пневмошлемы типа "Лиз-4" с индивидуальной подачей в них воздуха.

Рентгеновское излучение

В процессе технической эксплуатации радиоаппаратуры, когда питающее напряжение радиоаппаратуры выше 15 кВ, необходимо обязательно использовать защитные средства для предотвращения облучению операторов и инженерно-технических работников рентгеновским излучением, так как при таких напряжениях рентгеновское излучение рассеивается в окружающем пространстве производственного помещения.

Предельно допустимые дозы рентгеновского облучения предусмотрены санитарными нормами:

Для всего тела человека в течение недели не более 100 мр (миллирентген)

Только рук - 500 мр (80 мр в день).

В смежных помещениях с рентгеновской установкой доза облучения в течение недели не должна превышать 10 мр, а в близлежащих домах мощность дозы не должна превышать дозу нормального фона более чем на 0,01 мр в час.

Как защитные средства от действия мягких рентгеновских лучей применяются экраны из стального листа (1 мм), освинцованного алюминия (3 мм), покрытого оловом стекла (8 мм) или специальной резины (7.1).

Смотровые окна в рентгеновских установках выполняют из плексигласа (30 мм) или покрытого оловом стекла.

С целью предотвращения рассеивания рентгеновского излучения в производственном помещении, устраивают защитные ограждения из различных защитных материалов, например, свинца или бетона.

При кратковременных работах на рентгеновских установках в качестве средств индивидуальной защиты применяются фартуки, перчатки, шапочки, изготовленные из покрытой оловом резины.

Литература: , , , .

Вопросы для самоконтроля

1. В каких отраслях народного хозяйства используются ионизирующие излучения?

2. Какие три стадии хронической лучевой болезни Вы знаете?

3. Как оказывается влияние радиоактивных излучений на организм человека?

4. От каких факторов зависят поражения радиоактивными веществами?

5. Какая физическая суть единицы измерения ионизирующего излучения "зиверт"?

6. В чем физический смысл единицы "рентген"?

7. В каком документе установлены нормы радиационной безопасности?

9. Какие работники не допускаются к работе с источниками ионизирующего излучения?

10. Какие материалы применяют для защитных экранов?

11. Как транспортируют и хранят радиоактивные вещества?

12. Какой принцип защиты "расстоянием" и "время"?

13. Какие методы контроля применяются для измерения радиоактивных излучений?

14. Какие существуют приборы для измерения радиоактивных излучений?

15. Какие следует применять индивидуальные средства защиты от радиоактивных излучений?

Позволяет обезопасить человека только при использовании аппарата в медицинских учреждениях. На сегодняшний день имеется несколько видов защитных средств, которые делятся на группы:

  • средства коллективной защиты, они имеют два подвида: стационарные и передвижные;
  • средства от попадания прямых неиспользуемых лучей;
  • приспособления для обслуживающего персонала;
  • защитные средства, предназначенные для пациентов.

С 2003 года в силу вступили санитарные нормы, описанные в СанПиН и имеющие пункт 2.6.1.1192-03. Также официальными документами считаются акты ОСПОРБ-99 и НРБ-99. Все описанные правила затрагивают вопрос о проведении работ (от монтажных до реконструктивных) в помещении медицинского учреждения, которое обладает рентгеновским аппаратом. Рассматривается и налаживание производства и разработок средств защиты, и оборудование для нужд медицины.

Разработка оборудования в РФ

Сегодня производством оборудования на основе рентгеновского излучения, а также вспомогательных изделий и компонентов защиты занимается примерно 10 фирм. Большинство из них считается новыми, так как созданы во времена «перестройки». Они обладают необходимыми технологиями и специальным оборудованием. Их производства достаточно для того, чтобы обеспечить потребителя качественными изделиями в необходимом количестве. Компоненты для изготовления средств защиты поставляются от других производителей химической промышленности. Ярким примером становится завод в Ярославле. Он считается единственным главным поставщиком резины, из которой изготавливаются как индивидуальные средства защиты, так и для нужд стационарного кабинета (например, отделка стен).

Основной продукцией считается листовой свинец. Его используют для изготовления средств коллективной защиты. Над созданием трудится персонал завода по обработке цветных металлов. Во время технологического процесса осуществляется постоянный контроль по качеству продукта согласно ГОСТам. Одним из компонентов является баритовый концентрат с маркировкой КБ-3. Главный поставщик — горно-обогатительный комбинат в населенном пункте Лыткарино. Здесь же, но на другом предприятии изготавливают и рентгенозащитное стекло, которое имеет маркировку ТФ-5.

До некоторого времени производством и изучением средств защиты от излучения занимался Всероссийский НИИ медицинской техники. Разработки ученых из этого института до сих пор используются современными изготовителями. Именно персонал ВНИИМТ разрабатывает средства защиты без применения свинца. Главным компонентом становится смесь на основе концентрированных оксидов, добываемых из редкоземельных элементов.

Правила и нормы СанПиН от 2003 описывают и требования, применяемые к передвижным средствам защиты от излучения. В большинстве случаев во время изготовления аппарата в него не монтируется защита. Используется и ряд вспомогательных защитных средств, такие как фартуки, монтирование в экранно-снимочные изделия. Первый защитный слой принято создавать при постройке кабинета. В этом случае его нельзя считать частью медицинского инвентаря.


Допустимая доза облучения

Согласно проведенным исследованиям НКАДАР ООН, облучение, получаемое человеком при медицинском обследовании, занимает второе место в мире . Первая позиция отдана естественному радиационному фону на планете. За последние несколько лет прослеживаются тенденции роста количества получаемого излучения в медицинских целях. В статистических данных фигурирует 50% получаемого рентгеновского воздействия на человека от всей части других очагов. Основной причиной подобного роста является использование компьютерных аппаратов для . При этом страдает по большей части обслуживающий персонал, в то время как пациенты получают допустимую норму радиации.

В Российской Федерации фиксируется 30% радиационного заражения среди медицинского персонала. Большая часть облучения приходится на использование рентгеновских кабинетов и лишь небольшая доля — на флюорографические исследования.


Ситуация с обслуживающим персоналом

Как становится понятным из вышеуказанных фактов, защита от рентгеновского излучения необходима именно персоналу, который обслуживает кабинеты в медицинских учреждениях. При отделении лучевой диагностики большое внимание оказывается аппаратуре, режимам исследовательской деятельности, правильным действиям по укладке пациентов и их методике защиты. Таким способом достигается минимальная доза получаемого облучения и снижение брака в работе, дабы не подвергать пациентов повторной процедуре.

Благодаря выбранной методике персонал медицинских заведений, работающий с рентгеном, получает в 20 раз меньшую дозу, чем допустимый показатель за год. В большинстве случаев страдают от излучения второстепенные работники: хирурги, урологи, анестезиологи.

Безопасность для населения

На данный момент защита от рентгеновского излучения направлена на обеспечение сохранности здоровья пациентов.

Эти правила изложены приблизительно в 40 актах. Так как подсчет получаемой дозы не ведется, приходится соблюдать ряд правил:

  • проводить комплекс защитных методов с целью получения максимального количества информации при минимальном облучении;
  • считать рентген крайней мерой и всегда осуществлять поиск альтернативы;
  • принимать меры по соблюдению существующих норм.

https://youtu.be/AqIHvILCamI

По мнению государственной санитарно-эпидемиологической службы РФ, уже в ближайшие годы одного пациента снизится до 0,6 м 3 в. Это станет возможным только при соблюдении персоналом норм и правил.




Top